It is generally accepted that stellar annual or secular aberration is attributed to the changes in velocity of the detector. We can say it in a slightly different way. By means of the all known experiments, stellar ab...It is generally accepted that stellar annual or secular aberration is attributed to the changes in velocity of the detector. We can say it in a slightly different way. By means of the all known experiments, stellar aberration is directly or indirectly detectable and measurable, only if a detector changes its velocity. Our presumption is that stellar aberration is not caused by the changes in the velocity of the detector. It exists due to the movement of the detector regarding to an absolute inertial frame. Therefore it is just the question of how to choose such a frame. In this paper it is proposed a method to detect and measure instantaneous stellar aberration due to absolute velocity. We can call it an “absolute” stellar aberration. Combining an “annual” and an “absolute” we can define a “total” stellar aberration.展开更多
In this paper is presented an experiment that has a goal to measure the speed of light in one direction, using one clock and one mirror. To achieve this, we have to make the measurements during the period of one year ...In this paper is presented an experiment that has a goal to measure the speed of light in one direction, using one clock and one mirror. To achieve this, we have to make the measurements during the period of one year (nine months at least), taking into account earth’s movement through the space, earth’s rotation around its axis and the fact that earth spin axis is tilted with respect to the plane of its orbit of the sun.展开更多
In this paper, a method is presented by which it is possible to determine a distance between the sun and a star as well as a velocity at which the star moves relative to the sun. In order to achieve this, it is suffic...In this paper, a method is presented by which it is possible to determine a distance between the sun and a star as well as a velocity at which the star moves relative to the sun. In order to achieve this, it is sufficient to know three positions of the star and the unit vectors determined by the star and three arbitrarily chosen points that do not lie on a single line. The method has been tested using the data generated by a computer program as well as real data obtained by Gaia mission. In the first case, we found the huge differences comparing the results derived by the method to the results calculated by the traditional parallax method. In the second case also, there are large differences between the obtained and the expected results, but primarily because of the form of the input data, that is not fully suited to the proposed method. Under certain conditions, one would be able to find a velocity at which the sun is moving regarding a stationary coordinate system (K) that will be defined later on.展开更多
文摘It is generally accepted that stellar annual or secular aberration is attributed to the changes in velocity of the detector. We can say it in a slightly different way. By means of the all known experiments, stellar aberration is directly or indirectly detectable and measurable, only if a detector changes its velocity. Our presumption is that stellar aberration is not caused by the changes in the velocity of the detector. It exists due to the movement of the detector regarding to an absolute inertial frame. Therefore it is just the question of how to choose such a frame. In this paper it is proposed a method to detect and measure instantaneous stellar aberration due to absolute velocity. We can call it an “absolute” stellar aberration. Combining an “annual” and an “absolute” we can define a “total” stellar aberration.
文摘In this paper is presented an experiment that has a goal to measure the speed of light in one direction, using one clock and one mirror. To achieve this, we have to make the measurements during the period of one year (nine months at least), taking into account earth’s movement through the space, earth’s rotation around its axis and the fact that earth spin axis is tilted with respect to the plane of its orbit of the sun.
文摘In this paper, a method is presented by which it is possible to determine a distance between the sun and a star as well as a velocity at which the star moves relative to the sun. In order to achieve this, it is sufficient to know three positions of the star and the unit vectors determined by the star and three arbitrarily chosen points that do not lie on a single line. The method has been tested using the data generated by a computer program as well as real data obtained by Gaia mission. In the first case, we found the huge differences comparing the results derived by the method to the results calculated by the traditional parallax method. In the second case also, there are large differences between the obtained and the expected results, but primarily because of the form of the input data, that is not fully suited to the proposed method. Under certain conditions, one would be able to find a velocity at which the sun is moving regarding a stationary coordinate system (K) that will be defined later on.