期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Dendrite-free Zn deposition initiated by nanoscale inorganic-organic coating-modified 3D host for stable Zn-ion battery
1
作者 Jiaming Dong Junwen Duan +11 位作者 Ruirui Cao Wang Zhang Kangkang Fang Hao Yang Ying Liu Zhitao Shen Fumin Li Rong Liu mengqi jin Longhui Lei Huilin Li Chong Chen 《SusMat》 SCIE EI 2024年第2期13-27,共15页
A 3D nanostructured scaffold as the host for zinc enables effective inhibition of anodic dendrite growth.However,the increased electrode/electrolyte interface area provided by using 3D matrices exacerbates the passiva... A 3D nanostructured scaffold as the host for zinc enables effective inhibition of anodic dendrite growth.However,the increased electrode/electrolyte interface area provided by using 3D matrices exacerbates the passivation and localized corrosion of the Zn anode,ultimately bringing about the degradation of the electrochemical performance.Herein,a nanoscale coating of inorganic-organic hybrid(α-In_(2)Se_(3)-Nafion)onto a flexible carbon nanotubes(CNTs)framework(ISNF@CNTs)is designed as a Zn plating/stripping scaffold to ensure uniform Zn nucleation,thus achieving a dendrite-free and durable Zn anode.The intro-duced inorganic-organic interfacial layer is dense and sturdy,which hinders the direct exposure of deposited Zn to electrolytes and mitigates the side reactions.Meanwhile,the zincophilic nature of ISNF can largely reduce the nucleation energy barrier and promote the ion-diffusion transportation.Consequently,the ISNF@CNTs@Zn electrode exhibits a low-voltage hysteresis and a superior cycling life(over 1500 h),with dendrite-free Zn-plating behaviors in a typical symmetrical cell test.Additionally,the superior feature of ISNF@CNTs@Zn anode is further demonstrated by Zn-MnO_(2)cells in both coin and flexible quasi-solid-state configurations.This work puts forward an inspired remedy for advanced Zn-ion batteries. 展开更多
关键词 2D/3D configuration dendrite-free inorganic-organic layer interfacial protection Zn-ion batteries
原文传递
A tale of elemental accumulation and recycling in the metamorphosed Keketale VMS-type Pb-Zn deposit,Altai Mountains
2
作者 Chao Sun Huishan Zhang +7 位作者 Xiaoyong Yang Wenhua Ji Bo Chen Yanguang Li Zengchan Dong Mohamed Faisal mengqi jin Xiaojian Zhao 《Geoscience Frontiers》 SCIE CAS CSCD 2023年第1期247-271,共25页
The elemental accumulation and recycling in the metamorphosed Keketale VMS-type Pb-Zn deposit of the Altai Mountains are presented in this study.Based on detailed fieldwork and microscopic observation,the formation of... The elemental accumulation and recycling in the metamorphosed Keketale VMS-type Pb-Zn deposit of the Altai Mountains are presented in this study.Based on detailed fieldwork and microscopic observation,the formation of the deposit involved syngenetic massive sulfide mineralization and epigenetic superim-posed mineralization.Different generations of iron sulfides(i.e.,pyrite and pyrrhotite)with contrasting textural,elemental,and sulfur isotopic features were generated in primary mineralization(including hydrothermal iron sulfides,colloform pyrite)and secondary modification(including annealed iron sul-fides,oriented iron sulfides,and vein-pyrite).It is revealed that the spatial variation in textures and ele-ments of hydrothermal iron sulfides depends on the inhomogeneous fluid compositions and varied environment in VMS hydrothermal system.Both leached sulfur from the footwall volcanic rocks and reduced sulfur by the TSR process are regarded as important sulfur sources.Furthermore,large sulfur iso-topic fractionation and negativeδ^(34)S values were mainly caused by varied oxygen fugacity,and to a lesser extent,temperature fluctuation.The epigenetic polymetallic veins that contain sulfides and sulfosalts(e.g.,jordanite-geocronite,bournonite-seligmannite,boulangerite)were considered as the products of metamorphic fluid scavenged the metal-rich strata.All things considered,it is indicated that two epi-sodes of fluid with distinct origins were essential for the formation of the deposit.The predominant evolved seawater along with subordinate magmatic fluid mobilized metals from volcanic rocks and pre-cipitated massive sulfides near the seafloor are vital for primary mineralization.The metamorphic fluid remobilized metals(i.e.,FMEs:fluid mobile elements,e.g.,Pb,As,Sb)from neighboring volcanic and pyroclastic rocks and destabilized them within the fractured zone are responsible for secondary miner-alization,which enhances the economic value of the deposit.Accordingly,metal-rich Devonian strata had been successively swept by different origins of fluid,leading to progressively elemental enrichment and the formation of a large deposit.Furthermore,the current study enlightens that FME-bearing veins with economic benefits can be discovered near the metamorphosed VMS deposits. 展开更多
关键词 Pyrite Trace element Sulfur isotope Keketale Pb-Zn deposit VMS deposit Altai Mountains
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部