Determining the suitable areas for winter wheat under climate change and assessing the risk of freezing injury are crucial for the cultivation of winter wheat.We used an optimized Maximum Entropy(MaxEnt)Model to predi...Determining the suitable areas for winter wheat under climate change and assessing the risk of freezing injury are crucial for the cultivation of winter wheat.We used an optimized Maximum Entropy(MaxEnt)Model to predict the potential distribution of winter wheat in the current period(1970-2020)and the future period(2021-2100)under four shared socioeconomic pathway scenarios(SSPs).We applied statistical downscaling methods to downscale future climate data,established a scientific and practical freezing injury index(FII)by considering the growth period of winter wheat,and analyzed the characteristics of abrupt changes in winter wheat freezing injury by using the Mann-Kendall(M-K)test.The results showed that the prediction accuracy AUC value of the MaxEnt Model reached 0.976.The minimum temperature in the coldest month,precipitation in the wettest season and annual precipitation were the main factors affecting the spatial distribution of winter wheat.The total suitable area of winter wheat was approximately 4.40×10^(7)ha in the current period.In the 2070s,the moderately suitable areas had the greatest increase by 9.02×10^(5)ha under SSP245 and the least increase by 6.53×10^(5)ha under SSP370.The centroid coordinates of the total suitable areas tended to move northward.The potential risks of freezing injury in the high-latitude and-altitude areas of the Loess Plateau,China increased significantly.The northern areas of Xinzhou in Shanxi Province,China suffered the most serious freezing injury,and the southern areas of the Loess Plateau suffered the least.Environmental factors such as temperature,precipitation and geographical location had important impacts on the suitable area distribution and freezing injury risk of winter wheat.In the future,greater attention should be paid to the northward boundaries of both the winter wheat planting areas and the areas of freezing injury risk to provide the early warning of freezing injury and implement corresponding management strategies.展开更多
Better soil structure promotes extension of plant roots thereby improving plant growth and yield.Differences in soil structure can be determined by changes in the three phases of soil,which in turn affect soil functio...Better soil structure promotes extension of plant roots thereby improving plant growth and yield.Differences in soil structure can be determined by changes in the three phases of soil,which in turn affect soil function and fertility levels.To compare the quality of soil structure under different conditions,we used Generalized Soil Structure Index(GSSI)as an indicator to determine the relationship between the“input”of soil three phases and the“output”of soil structure.To achieve optimum monitoring of comprehensive indicators,we used Successive Projections Algorithm(SPA)for differential processing based on 0.0–2.0 fractional orders and 3.0–10.0 integer orders and select important wavelengths to process soil spectral data.In addition,we also applied multivariate regression learning models including Gaussian Process Regression(GPR)and Artificial Neural Network(ANN),exploring potential capabilities of hyperspectral in predicting GSSI.The results showed that spectral reflection,mainly contributed by long-wave near-infrared radiation had an inverse relationship with GSSI values.The wavelengths between 404-418 nm and 2193–2400 nm were important GSSI wavelengths in fractional differential spectroscopy data,while those ranging from 543 to 999 nm were important GSSI wavelengths in integer differential spectroscopy data.Also,non-linear models were more accurate than linear models.In addition,wide neural networks were best suited for establishing fractional-order differentiation and second-order differentiation models,while fine Gaussian support vector machines were best suited for establishing first-order differentiation models.In terms of preprocessing,a differential order of 0.9 was found as the best choice.From the results,we propose that when constructing optimal prediction models,it is necessary to consider indicators,differential orders,and model adaptability.Above all,this study provided a new method for an in-depth analyses of generalized soil structure.This also fills the gap limiting the detection of soil three phases structural characteristics and their dynamic changes and provides a technical references for quantitative and rapid evaluation of soil structure,function,and quality.展开更多
基金supported by the National Natural Science Foundation of China(31201168)the Basic Research Program of Shanxi Province,China(20210302123411)the earmarked fund for Modern Agro-industry Technology Research System,China(2022-07).
文摘Determining the suitable areas for winter wheat under climate change and assessing the risk of freezing injury are crucial for the cultivation of winter wheat.We used an optimized Maximum Entropy(MaxEnt)Model to predict the potential distribution of winter wheat in the current period(1970-2020)and the future period(2021-2100)under four shared socioeconomic pathway scenarios(SSPs).We applied statistical downscaling methods to downscale future climate data,established a scientific and practical freezing injury index(FII)by considering the growth period of winter wheat,and analyzed the characteristics of abrupt changes in winter wheat freezing injury by using the Mann-Kendall(M-K)test.The results showed that the prediction accuracy AUC value of the MaxEnt Model reached 0.976.The minimum temperature in the coldest month,precipitation in the wettest season and annual precipitation were the main factors affecting the spatial distribution of winter wheat.The total suitable area of winter wheat was approximately 4.40×10^(7)ha in the current period.In the 2070s,the moderately suitable areas had the greatest increase by 9.02×10^(5)ha under SSP245 and the least increase by 6.53×10^(5)ha under SSP370.The centroid coordinates of the total suitable areas tended to move northward.The potential risks of freezing injury in the high-latitude and-altitude areas of the Loess Plateau,China increased significantly.The northern areas of Xinzhou in Shanxi Province,China suffered the most serious freezing injury,and the southern areas of the Loess Plateau suffered the least.Environmental factors such as temperature,precipitation and geographical location had important impacts on the suitable area distribution and freezing injury risk of winter wheat.In the future,greater attention should be paid to the northward boundaries of both the winter wheat planting areas and the areas of freezing injury risk to provide the early warning of freezing injury and implement corresponding management strategies.
基金funded by the National Natural Science Foundation of China(31871571,31371572)the earmarked fund for Shanxi Province Graduate Education Innovation Project(2022Y312)+3 种基金supported by Modern Agro-industry Technology Research System(2023CYJSTX02-23)Scientific and Technological Innovation Fund of Shanxi Agricultural University(2018YJ17,2020BQ32)Key Technologies R&D Program of Shanxi Province(201903D211002,201603D3111005)National Key R&D Program of China(2019YFC1710800)。
文摘Better soil structure promotes extension of plant roots thereby improving plant growth and yield.Differences in soil structure can be determined by changes in the three phases of soil,which in turn affect soil function and fertility levels.To compare the quality of soil structure under different conditions,we used Generalized Soil Structure Index(GSSI)as an indicator to determine the relationship between the“input”of soil three phases and the“output”of soil structure.To achieve optimum monitoring of comprehensive indicators,we used Successive Projections Algorithm(SPA)for differential processing based on 0.0–2.0 fractional orders and 3.0–10.0 integer orders and select important wavelengths to process soil spectral data.In addition,we also applied multivariate regression learning models including Gaussian Process Regression(GPR)and Artificial Neural Network(ANN),exploring potential capabilities of hyperspectral in predicting GSSI.The results showed that spectral reflection,mainly contributed by long-wave near-infrared radiation had an inverse relationship with GSSI values.The wavelengths between 404-418 nm and 2193–2400 nm were important GSSI wavelengths in fractional differential spectroscopy data,while those ranging from 543 to 999 nm were important GSSI wavelengths in integer differential spectroscopy data.Also,non-linear models were more accurate than linear models.In addition,wide neural networks were best suited for establishing fractional-order differentiation and second-order differentiation models,while fine Gaussian support vector machines were best suited for establishing first-order differentiation models.In terms of preprocessing,a differential order of 0.9 was found as the best choice.From the results,we propose that when constructing optimal prediction models,it is necessary to consider indicators,differential orders,and model adaptability.Above all,this study provided a new method for an in-depth analyses of generalized soil structure.This also fills the gap limiting the detection of soil three phases structural characteristics and their dynamic changes and provides a technical references for quantitative and rapid evaluation of soil structure,function,and quality.