Now,Pt-based materials are still the best catalysts for hydrogen evolution reaction(HER).Nevertheless,the scarcity of Pt makes it impossible for the large-scale applications in industry.Although cobalt is taken as an ...Now,Pt-based materials are still the best catalysts for hydrogen evolution reaction(HER).Nevertheless,the scarcity of Pt makes it impossible for the large-scale applications in industry.Although cobalt is taken as an excellent HER catalyst due to its suitable H*binding,its alkali HER catalytic property need to be improved because of the sluggish water dissociation kinetics.In this work,nitrogen with small atomic radius and metallophilicity is employed to adjust local charges of atomically dispersed Mo^(δ+)sites on Co nanosheets to trigger water dissociation.Theoretical calculations suggest that the energy barrier of water dissociation can be effectively reduced by introducing nitrogen coordinated Mo^(δ+)sites.To realize this speculation,atomically dispersed Mo^(δ+)sites with nitrogen coordination of Mo(N)/Co were prepared via reconstruction of CoMoO_(4).High angle annular dark-field scanning transmission electron microscopy(HAADF-STEM)and X-ray absorption spectroscopy(XAS)demonstrate the coordination of N atoms with atomically dispersed Mo atoms,leading to the local charges of atomically dispersed Mo^(δ+)sites in Mo(N)/Co.The measurement from ambient pressure X-ray photoelectron spectroscopy(AP-XPS)reveals that the Mo^(δ+)sites promote the adsorption and activation of water molecule.Therefore,the Mo(N)/Co exhibits an excellent activity,which need only an overpotential of 39 mV to reach the current density of 10 mA cm^(-2).The proposed strategy provides an advance pathway to design and boost alkaline HER activity at the atomic-level.展开更多
Developing cost-effective and high-efficiency oxygen reduction reaction(ORR)catalysts is imperative for promoting the substantial progress of fuel cells and metal-air batteries.The coordination and geometric engineeri...Developing cost-effective and high-efficiency oxygen reduction reaction(ORR)catalysts is imperative for promoting the substantial progress of fuel cells and metal-air batteries.The coordination and geometric engineering of single-atom catalysts(SACs)occurred the promising approach to overcome the thermodynamics and kinetics problems in high-efficiency electrocatalysis.Herein,we rationally constructed atomically dispersed Co atoms on porous N-enriched graphene material C_(2)N(CoSA-C2N)for efficient oxygen reduction reaction(ORR).Systematic characterizations demonstrated the active sites for CoSA-C2N is as identified as coordinatively unsaturated Co-N_(2)moiety,which exhibits ORR intrinsic activity.Structurally,the porous N-enriched graphene framework in C_(2)N could effectively increase the accessibility to the active sites and promote mass transfer rate,contributing to improved ORR kinetics.Consequently,CoSA-C_(2)N exhibited superior ORR performance in both acidic and alkaline conditions as well as impressive long-term durability.The coordination and geometric engineering of SACs will provide a novel approach to advanced catalysts for energy related applications.展开更多
基金the International Science and Technology Cooperation Program(2017YFE0127800 and 2018YFE0203400)the Natural Science Foundation of China(21872174,21762036 and U1932148)+7 种基金the Hunan Provincial Science and Technology Program(2017XK2026)the Shenzhen Science and Technology Innovation Project(JCYJ20180307151313532)Innovation and Entrepreneurship Training Program for College Students(S202110670023)the Natural Science Foundation of Science and Technology Department of Guizhou Province([2019]1297)the Special Project of Science and Technology Department of Guizhou Province([2020]QNSYXM03)the Natural Science Foundation of Education Department of Guizhou Province([2019]213,[2015]66)Teaching Quality Improvement Project of Qiannan Normal University for Nationalities([2017]50)the Beam Lines of BL01C1,BL24A1 in the NSRRC(MOST 109-2113-M-213-002)and beamline BL10B in National Synchrotron Radiation Laboratory。
文摘Now,Pt-based materials are still the best catalysts for hydrogen evolution reaction(HER).Nevertheless,the scarcity of Pt makes it impossible for the large-scale applications in industry.Although cobalt is taken as an excellent HER catalyst due to its suitable H*binding,its alkali HER catalytic property need to be improved because of the sluggish water dissociation kinetics.In this work,nitrogen with small atomic radius and metallophilicity is employed to adjust local charges of atomically dispersed Mo^(δ+)sites on Co nanosheets to trigger water dissociation.Theoretical calculations suggest that the energy barrier of water dissociation can be effectively reduced by introducing nitrogen coordinated Mo^(δ+)sites.To realize this speculation,atomically dispersed Mo^(δ+)sites with nitrogen coordination of Mo(N)/Co were prepared via reconstruction of CoMoO_(4).High angle annular dark-field scanning transmission electron microscopy(HAADF-STEM)and X-ray absorption spectroscopy(XAS)demonstrate the coordination of N atoms with atomically dispersed Mo atoms,leading to the local charges of atomically dispersed Mo^(δ+)sites in Mo(N)/Co.The measurement from ambient pressure X-ray photoelectron spectroscopy(AP-XPS)reveals that the Mo^(δ+)sites promote the adsorption and activation of water molecule.Therefore,the Mo(N)/Co exhibits an excellent activity,which need only an overpotential of 39 mV to reach the current density of 10 mA cm^(-2).The proposed strategy provides an advance pathway to design and boost alkaline HER activity at the atomic-level.
基金supported by the National Natural Science Foundation of China(Nos.22201262 and 51902013)Natural Science Foundation of Henan Province(No.222300420290)+1 种基金Foundation of Department of Science and Technology of Guizhou province(No.[2019]1297)Engineering Research Center of Guihzou province(No.[2018]487).
文摘Developing cost-effective and high-efficiency oxygen reduction reaction(ORR)catalysts is imperative for promoting the substantial progress of fuel cells and metal-air batteries.The coordination and geometric engineering of single-atom catalysts(SACs)occurred the promising approach to overcome the thermodynamics and kinetics problems in high-efficiency electrocatalysis.Herein,we rationally constructed atomically dispersed Co atoms on porous N-enriched graphene material C_(2)N(CoSA-C2N)for efficient oxygen reduction reaction(ORR).Systematic characterizations demonstrated the active sites for CoSA-C2N is as identified as coordinatively unsaturated Co-N_(2)moiety,which exhibits ORR intrinsic activity.Structurally,the porous N-enriched graphene framework in C_(2)N could effectively increase the accessibility to the active sites and promote mass transfer rate,contributing to improved ORR kinetics.Consequently,CoSA-C_(2)N exhibited superior ORR performance in both acidic and alkaline conditions as well as impressive long-term durability.The coordination and geometric engineering of SACs will provide a novel approach to advanced catalysts for energy related applications.