The central dogma of modern biology underscores the pivotal roles proteins play in diverse biological processes,the study of which necessitates advanced methods to produce proteins with precision and versatility.Chemi...The central dogma of modern biology underscores the pivotal roles proteins play in diverse biological processes,the study of which necessitates advanced methods to produce proteins with precision and versatility.Chemical protein synthesis,a powerful approach utilizing chemical reactions for the de novo construction of structurally accurate proteins,has emerged as a transformative tool for studying proteins and generating protein derivatives/mimics inaccessible by natural biological machinery,including post-translationally modified proteins,proteins comprised of unnatural amino acids,as well as mirror-image proteins.This review summarizes recent strides in synthetic method developments for chemical protein synthesis,including innovative techniques in solid-phase peptide synthesis,the challenges presented by difficult sequences in either synthesis or folding and the exploration of novel ligation reactions using both chemical and enzymatic methods.Furthermore,the review also delves into newly developed protocols for site-selective protein modifications and the generation of stapled or macrocyclized peptides/miniproteins,highlighting the power of chemical methods to make structurally diverse proteins.Recent applications of synthetic proteins in investigating post-translational modifications(phosphorylation,lipidation,glycosylation,ubiquitination,etc.),mirror-image biological processes and drug development are further discussed.Together,these topics provide a comprehensive overview of the current landscape of chemical protein synthesis.展开更多
Small ubiquitin-like modifiers(SUMOs)are protein modifiers that can form polymeric chains.They are important signals in cellular processes,and their study and profiling require the development of molecular tools.Herei...Small ubiquitin-like modifiers(SUMOs)are protein modifiers that can form polymeric chains.They are important signals in cellular processes,and their study and profiling require the development of molecular tools.Herein,the authors have reported an efficient chemical protein synthesis approach for the generation of dimeric SUMO-2-based photoaffinity probes through the ligation of four readily synthesizable peptides.Proteomic studies using this diSUMO-2 probe on HeLa cell nuclear lysate found it to capture a significantly different selection of proteins compared with its monoSUMO counterparts.This resulted in the identification of several previously unknown SUMO chain-specific interacting proteins such as 40S ribosomal protein S3,which showed a significantly higher affinity for polySUMO chains than monomeric SUMO.Collectively,these results emphasize the need to develop SUMO chain-based probes in other species,and to shed light on the important role of polySUMOylation in diseases.展开更多
基金supported by the National Key R&D Program of China(2022YFC3401500)the National Natural Science Foundation of China(22137005,92253302,22227810 to Lei Liu,22177004,92153301,22321005 to Suwei Dong,22277020 to Yiming Li,22022703,22177108,22377118 to Ji-Shen Zheng,92353302,22177059 to Yongxiang Chen,22177035 to Jun Guo,22277029,22077036 to Chunmao He,22077078 to Honggang Hu92353302,92053108 to Yanmei Li,22277015 to Junfeng Zhao)。
文摘The central dogma of modern biology underscores the pivotal roles proteins play in diverse biological processes,the study of which necessitates advanced methods to produce proteins with precision and versatility.Chemical protein synthesis,a powerful approach utilizing chemical reactions for the de novo construction of structurally accurate proteins,has emerged as a transformative tool for studying proteins and generating protein derivatives/mimics inaccessible by natural biological machinery,including post-translationally modified proteins,proteins comprised of unnatural amino acids,as well as mirror-image proteins.This review summarizes recent strides in synthetic method developments for chemical protein synthesis,including innovative techniques in solid-phase peptide synthesis,the challenges presented by difficult sequences in either synthesis or folding and the exploration of novel ligation reactions using both chemical and enzymatic methods.Furthermore,the review also delves into newly developed protocols for site-selective protein modifications and the generation of stapled or macrocyclized peptides/miniproteins,highlighting the power of chemical methods to make structurally diverse proteins.Recent applications of synthetic proteins in investigating post-translational modifications(phosphorylation,lipidation,glycosylation,ubiquitination,etc.),mirror-image biological processes and drug development are further discussed.Together,these topics provide a comprehensive overview of the current landscape of chemical protein synthesis.
基金This study was supported by the National Key R&D Program of China(nos.2017YFA0505200 and 2017YFA0505400)the National Natural Science Foundation of China(nos.91753205,21877024,21977089,81621002,and 21621003)the Fundamental Research Funds for the Central Universities(no.JZ2019HGPB0105).
文摘Small ubiquitin-like modifiers(SUMOs)are protein modifiers that can form polymeric chains.They are important signals in cellular processes,and their study and profiling require the development of molecular tools.Herein,the authors have reported an efficient chemical protein synthesis approach for the generation of dimeric SUMO-2-based photoaffinity probes through the ligation of four readily synthesizable peptides.Proteomic studies using this diSUMO-2 probe on HeLa cell nuclear lysate found it to capture a significantly different selection of proteins compared with its monoSUMO counterparts.This resulted in the identification of several previously unknown SUMO chain-specific interacting proteins such as 40S ribosomal protein S3,which showed a significantly higher affinity for polySUMO chains than monomeric SUMO.Collectively,these results emphasize the need to develop SUMO chain-based probes in other species,and to shed light on the important role of polySUMOylation in diseases.
基金We thank the National Key R&D Program of China(2017YFA0505200,2016YFA0400903,and 2015CB910103)National Science Foundation of China(91753205,21532004,21761142008,81621002,21621003,91849129,and 21708036)for their financial support.
文摘Mutations in genes encoding PINK1(PTEN-induced kinase 1)and Parkin(E3 ubiquitin ligase)are identified in familial Parkinson’s disease.However,it remains unclear whether the phosphorylated Ub chains activate wild-type Parkin(w-Parkin)or phosphorylated Parkin(p-Parkin),with the consequent expulsion of the damaged mitochondria.