In 1993, Tsai proved that a proper holomorphic mapping f: Ω → Ω′ from an irreducible bounded symmetric domain Ω of rank ? 2 into a bounded symmetric domain Ω′ is necessarily totally geodesic provided that r′:=...In 1993, Tsai proved that a proper holomorphic mapping f: Ω → Ω′ from an irreducible bounded symmetric domain Ω of rank ? 2 into a bounded symmetric domain Ω′ is necessarily totally geodesic provided that r′:= rank(Ωg’) ? rank(Ω):= r, proving a conjecture of the author’s motivated by Hermitian metric rigidity. As a first step in the proof, Tsai showed that df preserves almost everywhere the set of tangent vectors of rank 1. Identifying bounded symmetric domains as open subsets of their compact duals by means of the Borel embedding, this means that the germ of f at a general point preserves the varieties of minimal rational tangents (VMRTs).In another completely different direction Hwang-Mok established with very few exceptions the Cartan-Fubini extension priniciple for germs of local biholomorphisms between Fano manifolds of Picard number 1, showing that the germ of map extends to a global biholomorphism provided that it preserves VMRTs. We propose to isolate the problem of characterization of special holomorphic embeddings between Fano manifolds of Picard number 1, especially in the case of classical manifolds such as rational homogeneous spaces of Picard number 1, by a non-equidimensional analogue of the Cartan-Fubini extension principle. As an illustration we show along this line that standard embeddings between complex Grassmann manifolds of rank ? 2 can be characterized by the VMRT-preserving property and a non-degeneracy condition, giving a new proof of a result of Neretin’s which on the one hand paves the way for far-reaching generalizations to the context of rational homogeneous spaces and more generally Fano manifolds of Picard number 1, on the other hand should be applicable to the study of proper holomorphic mappings between bounded domains carrying some form of geometric structures.展开更多
We obtain rigidity results on arbitrary proper holomorphic maps F from an irreducible bounded symmetric domain Ω of rank ≥2 into any complex space Z. After lifting to the normalization of the subvariety F (Ω) Z, we...We obtain rigidity results on arbitrary proper holomorphic maps F from an irreducible bounded symmetric domain Ω of rank ≥2 into any complex space Z. After lifting to the normalization of the subvariety F (Ω) Z, we prove that F must be the canonical projection map to the quotient space of Ω by a finite group of automorphisms. The approach is along the line of the works of Mok and Tsai by considering radial limits of bounded holomorphic functions derived from F and proving that proper holomorphic maps between bounded symmetric domains preserve certain totally geodesic subdomains. In contrast to the previous works, in general we have to deal with multivalent holomorphic maps for which Fatou’s theorem cannot be applied directly. We bypass the difficulty by devising a limiting process for taking radial limits of correspondences arising from proper holomorphic maps and by elementary estimates allowing us to define distinct univalent branches of the underlying multivalent map on certain subsets. As a consequence of our rigidity result, with the exception of Type-IV domains, any proper holomorphic map f : Ω→ D of Ω onto a bounded convex domain D is necessarily a biholomorphism. In the exceptional case where Ω is a Type-IV domain, either f is a biholomorphism or it is a double cover branched over a totally geodesic submanifold which can be explicitly described.展开更多
We determine all of lines in the moduli space M of stable bundles for arbitrary rank and degree. A further application of minimal rational curves is also given in last section.
Motivated by problems arising from Arithmetic Geometry,in an earlier article one of the authors studied germs of holomorphic isometries between bounded domains with respect to the Bergman metric.In the case of a germ ...Motivated by problems arising from Arithmetic Geometry,in an earlier article one of the authors studied germs of holomorphic isometries between bounded domains with respect to the Bergman metric.In the case of a germ of holomorphic isometry f:(Δ,λ ds 2Δ ;0) → (Ω,ds 2Ω ;0) of the Poincar disk Δ into a bounded symmetric domain Ω C N in its Harish-Chandra realization and equipped with the Bergman metric,f extends to a proper holomorphic isometric embedding F:(Δ,λ ds 2Δ) → (Ω,ds 2Ω) and Graph(f) extends to an affine-algebraic variety V C × C N.Examples of F which are not totally geodesic have been constructed.They arise primarily from the p-th root map ρ p:H → H p and a non-standard holomorphic embedding G from the upper half-plane to the Siegel upper half-plane H 3 of genus 3.In the current article on the one hand we examine second fundamental forms σ of these known examples,by computing explicitly σ 2.On the other hand we study on the theoretical side asymptotic properties of σ for arbitrary holomorphic isometries of the Poincar disk into polydisks.For such mappings expressing via the inverse Cayley transform in terms of the Euclidean coordinate τ=s + it on the upper half-plane H,we have φ(τ)=t 2 u(τ),where u t=0 ≡ 0.We show that u must satisfy the first order differential equation u t | t=0 ≡ 0 on the real axis outside a finite number of points at which u is singular.As a by-product of our method of proof we show that any non-standard holomorphic isometric embedding of the Poincar disk into the polydisk must develop singularities along the boundary circle.The equation φuφt | t=0 ≡ 0 along the real axis for holomorphic isometries into polydisks distinguishes the latter maps from holomorphic isometries into Siegel upper half-planes arising from G.Towards the end of the article we formulate characterization problems for holomorphic isometries suggested both by the theoretical and the computational results of the article.展开更多
We study compact complex submanifolds S of quotient manifolds X =Ω/F of irreducible bounded symmetric domains by torsion free discrete lattices of automorphisms, and we are interested in the characterization of the t...We study compact complex submanifolds S of quotient manifolds X =Ω/F of irreducible bounded symmetric domains by torsion free discrete lattices of automorphisms, and we are interested in the characterization of the totally geodesic submanifolds among compact splitting complex submanifolds S C X, i.e., under the assumption that the tangent sequence over S splits holomorphically. We prove results of two types. The first type of results concerns S C X which are characteristic complex submanifolds, i.e., embedding Ω as an open subset of its compact dual manifold M by means of the Borel embedding, the non-zero (1, 0)-vectors tangent to S lift under a local inverse of the universal covering map π → X to minimal rational tangents of M. We prove that a compact characteristic complex submanifold S C X is necessarily totally geodesic whenever S is a splitting complex submanifold. Our proof generalizes the case of the characterization of totally geodesic complex submanifolds of quotients of the complex unit ball B^n obtained by Mok (2005). The proof given here is however new and it is based on a monotonic property of curvatures of Hermitian holomorphic vector subbundles of Hermitian holomorphic vector bundles and on exploiting the splitting of the tangent sequence to identify the holomorphic tangent bundle Ts as a quotient bundle rather than as a subbundle of the restriction of the holomorphic tangent bundle Tx to S. The second type of results concerns characterization of total geodesic submanifolds among compact splitting complex submanifolds S C X deduced from the results of Aubin (1978) and Yau (1978) which imply the existence of Kahler-Einstein metrics on S C X. We prove that compact s- plitting complex submanifolds S C X of sufticiently large dimension (depending on ) are necessarily totally geodesic. The proof relies on the Hermitian-Einstein property of holomorphic vector bundles associated to TS, which implies that endomorphisms of such bundles are parallel, and the construction of endomorphisms of these vector bundles by means of the splitting of the tangent sequence on S. We conclude with conjectures on the sharp lower bound on dim(S) guaranteeing total geodesy of S C X for the case of the type-I domains of rank 2 and the case of type-IV domains, and examine a case which is critical for both conjectures, i.e., on compact complex surfaces of quotients of the 4-dimensional Lie ball, equivalently the 4-dimensional type-I domain dual to the Crassmannian of 2-planes in C4 Keywords bounded symmetric domains, tangent sequence, splitting complex submanifolds, varieties of minimal rational tangents, Kahler-Einstein metrics展开更多
基金This research is partially supported by a Competitive Earmarked Research Grant of the Research Grants Council of Hong Kong,China
文摘In 1993, Tsai proved that a proper holomorphic mapping f: Ω → Ω′ from an irreducible bounded symmetric domain Ω of rank ? 2 into a bounded symmetric domain Ω′ is necessarily totally geodesic provided that r′:= rank(Ωg’) ? rank(Ω):= r, proving a conjecture of the author’s motivated by Hermitian metric rigidity. As a first step in the proof, Tsai showed that df preserves almost everywhere the set of tangent vectors of rank 1. Identifying bounded symmetric domains as open subsets of their compact duals by means of the Borel embedding, this means that the germ of f at a general point preserves the varieties of minimal rational tangents (VMRTs).In another completely different direction Hwang-Mok established with very few exceptions the Cartan-Fubini extension priniciple for germs of local biholomorphisms between Fano manifolds of Picard number 1, showing that the germ of map extends to a global biholomorphism provided that it preserves VMRTs. We propose to isolate the problem of characterization of special holomorphic embeddings between Fano manifolds of Picard number 1, especially in the case of classical manifolds such as rational homogeneous spaces of Picard number 1, by a non-equidimensional analogue of the Cartan-Fubini extension principle. As an illustration we show along this line that standard embeddings between complex Grassmann manifolds of rank ? 2 can be characterized by the VMRT-preserving property and a non-degeneracy condition, giving a new proof of a result of Neretin’s which on the one hand paves the way for far-reaching generalizations to the context of rational homogeneous spaces and more generally Fano manifolds of Picard number 1, on the other hand should be applicable to the study of proper holomorphic mappings between bounded domains carrying some form of geometric structures.
基金supported by the GRF7032/08P of the HKRGC, Hong KongNational Natural Science Foundation of China (Grant No. 10971156)
文摘We obtain rigidity results on arbitrary proper holomorphic maps F from an irreducible bounded symmetric domain Ω of rank ≥2 into any complex space Z. After lifting to the normalization of the subvariety F (Ω) Z, we prove that F must be the canonical projection map to the quotient space of Ω by a finite group of automorphisms. The approach is along the line of the works of Mok and Tsai by considering radial limits of bounded holomorphic functions derived from F and proving that proper holomorphic maps between bounded symmetric domains preserve certain totally geodesic subdomains. In contrast to the previous works, in general we have to deal with multivalent holomorphic maps for which Fatou’s theorem cannot be applied directly. We bypass the difficulty by devising a limiting process for taking radial limits of correspondences arising from proper holomorphic maps and by elementary estimates allowing us to define distinct univalent branches of the underlying multivalent map on certain subsets. As a consequence of our rigidity result, with the exception of Type-IV domains, any proper holomorphic map f : Ω→ D of Ω onto a bounded convex domain D is necessarily a biholomorphism. In the exceptional case where Ω is a Type-IV domain, either f is a biholomorphism or it is a double cover branched over a totally geodesic submanifold which can be explicitly described.
基金supported by the Competitive Earmarked Research Grant (Grant No. HKU7025/03P) of the Research Grant Council, Hong Kong
文摘We determine all of lines in the moduli space M of stable bundles for arbitrary rank and degree. A further application of minimal rational curves is also given in last section.
基金supported by the Research Grants Council of Hong Kong,China (Grant No. CERG 7018/03)
文摘Motivated by problems arising from Arithmetic Geometry,in an earlier article one of the authors studied germs of holomorphic isometries between bounded domains with respect to the Bergman metric.In the case of a germ of holomorphic isometry f:(Δ,λ ds 2Δ ;0) → (Ω,ds 2Ω ;0) of the Poincar disk Δ into a bounded symmetric domain Ω C N in its Harish-Chandra realization and equipped with the Bergman metric,f extends to a proper holomorphic isometric embedding F:(Δ,λ ds 2Δ) → (Ω,ds 2Ω) and Graph(f) extends to an affine-algebraic variety V C × C N.Examples of F which are not totally geodesic have been constructed.They arise primarily from the p-th root map ρ p:H → H p and a non-standard holomorphic embedding G from the upper half-plane to the Siegel upper half-plane H 3 of genus 3.In the current article on the one hand we examine second fundamental forms σ of these known examples,by computing explicitly σ 2.On the other hand we study on the theoretical side asymptotic properties of σ for arbitrary holomorphic isometries of the Poincar disk into polydisks.For such mappings expressing via the inverse Cayley transform in terms of the Euclidean coordinate τ=s + it on the upper half-plane H,we have φ(τ)=t 2 u(τ),where u t=0 ≡ 0.We show that u must satisfy the first order differential equation u t | t=0 ≡ 0 on the real axis outside a finite number of points at which u is singular.As a by-product of our method of proof we show that any non-standard holomorphic isometric embedding of the Poincar disk into the polydisk must develop singularities along the boundary circle.The equation φuφt | t=0 ≡ 0 along the real axis for holomorphic isometries into polydisks distinguishes the latter maps from holomorphic isometries into Siegel upper half-planes arising from G.Towards the end of the article we formulate characterization problems for holomorphic isometries suggested both by the theoretical and the computational results of the article.
基金supported by the Research Grants Council of Hong Kong of China(Grant No.17303814)National Natural Science Foundation of China(Grant No.11501205)Science and Technology Commission of Shanghai Municipality(Grant No.13dz2260400)
文摘We study compact complex submanifolds S of quotient manifolds X =Ω/F of irreducible bounded symmetric domains by torsion free discrete lattices of automorphisms, and we are interested in the characterization of the totally geodesic submanifolds among compact splitting complex submanifolds S C X, i.e., under the assumption that the tangent sequence over S splits holomorphically. We prove results of two types. The first type of results concerns S C X which are characteristic complex submanifolds, i.e., embedding Ω as an open subset of its compact dual manifold M by means of the Borel embedding, the non-zero (1, 0)-vectors tangent to S lift under a local inverse of the universal covering map π → X to minimal rational tangents of M. We prove that a compact characteristic complex submanifold S C X is necessarily totally geodesic whenever S is a splitting complex submanifold. Our proof generalizes the case of the characterization of totally geodesic complex submanifolds of quotients of the complex unit ball B^n obtained by Mok (2005). The proof given here is however new and it is based on a monotonic property of curvatures of Hermitian holomorphic vector subbundles of Hermitian holomorphic vector bundles and on exploiting the splitting of the tangent sequence to identify the holomorphic tangent bundle Ts as a quotient bundle rather than as a subbundle of the restriction of the holomorphic tangent bundle Tx to S. The second type of results concerns characterization of total geodesic submanifolds among compact splitting complex submanifolds S C X deduced from the results of Aubin (1978) and Yau (1978) which imply the existence of Kahler-Einstein metrics on S C X. We prove that compact s- plitting complex submanifolds S C X of sufticiently large dimension (depending on ) are necessarily totally geodesic. The proof relies on the Hermitian-Einstein property of holomorphic vector bundles associated to TS, which implies that endomorphisms of such bundles are parallel, and the construction of endomorphisms of these vector bundles by means of the splitting of the tangent sequence on S. We conclude with conjectures on the sharp lower bound on dim(S) guaranteeing total geodesy of S C X for the case of the type-I domains of rank 2 and the case of type-IV domains, and examine a case which is critical for both conjectures, i.e., on compact complex surfaces of quotients of the 4-dimensional Lie ball, equivalently the 4-dimensional type-I domain dual to the Crassmannian of 2-planes in C4 Keywords bounded symmetric domains, tangent sequence, splitting complex submanifolds, varieties of minimal rational tangents, Kahler-Einstein metrics