期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于动态Mg^(2+)-吲哚的可修复可回收聚六氢三嗪薄膜的制备及性能
1
作者 吴禄锟 李亿程 +1 位作者 张林 常冠军 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2022年第9期124-131,共8页
以色胺(Tryp)、聚(丙二醇)双(2-氨基丙醚)(D-400)和多聚甲醛为原料,简单共聚制备一系列吲哚基聚六氢三嗪(IN-PHT)聚合物薄膜材料,将聚合物薄膜用MgCl_(2)水溶液浸泡后烘干,得到Mg^(2+)-吲哚动态交联的聚六氢三嗪(Mg-IN-PHT)薄膜材料。... 以色胺(Tryp)、聚(丙二醇)双(2-氨基丙醚)(D-400)和多聚甲醛为原料,简单共聚制备一系列吲哚基聚六氢三嗪(IN-PHT)聚合物薄膜材料,将聚合物薄膜用MgCl_(2)水溶液浸泡后烘干,得到Mg^(2+)-吲哚动态交联的聚六氢三嗪(Mg-IN-PHT)薄膜材料。元素分布图证实,Mg^(2+)在聚合物Mg-IN-PHT中存在且分布均匀。利用理论计算模拟、紫外可见吸收光谱法、荧光光谱法等手段证明了Mg-IN-PHT薄膜中Mg^(2+)与吲哚基团间形成了阳离子-π相互作用。通过循环拉伸测试表征了Mg-IN-PHT薄膜的力学性能,测试结果表明,Mg-IN-PHT薄膜具有较强的拉伸强度(16.1 MPa)和韧性(206.2%),明显高于IN-PHT薄膜(11.0 MPa,117.0%)。一方面,阳离子-π动态交联增大了聚合物网络中的交联密度,从而增强了薄膜的强度;另一方面,柔性聚合物网络受到外部刺激时易发生分子链的滑移,“点-面”阳离子-π相互作用可以更容易地形成和解除,能量耗散效果较好,从而提高了材料的韧性。同时研究了薄膜材料的热稳定性变化,结果表明,Mg-IN-PHT薄膜热分解温度(280℃)和玻璃化转变温度T_(g)(-10℃)均高于IN-PHT薄膜的热分解温度(234℃)和T_(g)(-16℃)。另外,动态的“点-面”阳离子-π相互作用赋予了Mg-IN-PHT膜优异的可修复和可回收性能。 展开更多
关键词 吲哚 聚六氢三嗪 阳离子-π 修复 回收
在线阅读 下载PDF
Irregularly sampled seismic data interpolation via wavelet-based convolutional block attention deep learning 被引量:2
2
作者 Yihuai Lou lukun wu +4 位作者 Lin Liu Kai Yu Naihao Liu Zhiguo Wang Wei Wang 《Artificial Intelligence in Geosciences》 2022年第1期192-202,共11页
Seismic data interpolation,especially irregularly sampled data interpolation,is a critical task for seismic processing and subsequent interpretation.Recently,with the development of machine learning and deep learning,... Seismic data interpolation,especially irregularly sampled data interpolation,is a critical task for seismic processing and subsequent interpretation.Recently,with the development of machine learning and deep learning,convolutional neural networks(CNNs)are applied for interpolating irregularly sampled seismic data.CNN based approaches can address the apparent defects of traditional interpolation methods,such as the low computational efficiency and the difficulty on parameters selection.However,current CNN based methods only consider the temporal and spatial features of irregularly sampled seismic data,which fail to consider the frequency features of seismic data,i.e.,the multi-scale features.To overcome these drawbacks,we propose a wavelet-based convolutional block attention deep learning(W-CBADL)network for irregularly sampled seismic data reconstruction.We firstly introduce the discrete wavelet transform(DWT)and the inverse wavelet transform(IWT)to the commonly used U-Net by considering the multi-scale features of irregularly sampled seismic data.Moreover,we propose to adopt the convolutional block attention module(CBAM)to precisely restore sampled seismic traces,which could apply the attention to both channel and spatial dimensions.Finally,we adopt the proposed W-CBADL model to synthetic and pre-stack field data to evaluate its validity and effectiveness.The results demonstrate that the proposed W-CBADL model could reconstruct irregularly sampled seismic data more effectively and more efficiently than the state-of-the-art contrastive CNN based models. 展开更多
关键词 Irregularly sampled seismic data reconstruction Deep learning U-Net Discrete wavelet transform Convolutional block attention module
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部