Water is considered to be an inhibitor of CO oxidation.The mechanism of retarding the reaction is thought to contribute to the practical application of CO oxidation,which is investigated by constructing the coupling o...Water is considered to be an inhibitor of CO oxidation.The mechanism of retarding the reaction is thought to contribute to the practical application of CO oxidation,which is investigated by constructing the coupling of Au nanoparticles and defective CuO to form metal-support interactions(MSI)and oxygen vacancies(OVs).The introduction of Au forms a new CO adsorption site,which successfully solves the competitive adsorption problem of CO with H2O and O_(2).Due to the coupling of MSI and OVs,the reduced ability of catalyst and the activation and migration ability of oxygen are enhanced simultaneously.Au-CuO has the ability to oxidize CO at room temperature with high stability under a humid environment.Theoretical calculation confirmed the competitive adsorption and the influence of MSI and OVs coupling on the catalyst performance.The mechanism of water resistance in CO catalytic oxidation was also explained.展开更多
Rechargeable aluminum batteries(RABs)have attracted great interest as one of the most promising candidates for large-scale energy storage because of their high volumetric capacity,low cost,high safety and the abundanc...Rechargeable aluminum batteries(RABs)have attracted great interest as one of the most promising candidates for large-scale energy storage because of their high volumetric capacity,low cost,high safety and the abundance of aluminum.However,compared with the aluminum anodes,the cathode materials face more problems including low specific capacity,relatively sluggish kinetics in most host structures and/or limited cycle lifespan,which pose the major challenge for RABs in further practical applications.During the past years,intensive efforts have been devoted to developing new cathode materials and/or designing engineered nanostructures to greatly improve RABs’electrochemical performances.In addition to nanotechnologybased electrode structure designs,the intrinsic chemical structures and charge storage mechanisms of cathode materials play an equally crucial role,if not more,in revolutionizing the battery performances.This review,here,focuses on current understandings into the charge storage mechanisms of cathode materials in RABs from a chemical reaction point of view.First,the fundamental chemistry,charge storage mechanisms and design principles of RAB cathode materials are highlighted.Based on different ion charge carriers,the current cathode materials are classified into four groups,including Al^(3+)-hosting,Al Cl_(4)^(-)-hosting,Al Cl_(2)^(+)/Al Cl_(2)^(+)-hosting,and Cl^(-)-hosting cathode materials.Next,the respective typical electrode structures,optimization strategies,electrochemical performances and charge storage mechanisms are discussed in detail to establish their chemistry-structure-property relationships.This review on current understandings of the cathode charge storage mechanisms will lay the ground and hopefully set new directions into the rational design of high-performance cathode materials in RABs,and open up new opportunities for designing new electrolyte systems with respect to the targeted cathode systems.展开更多
基金supported by the National Natural Science Foundation of China(Grant nos.51772183 and 52072230).
文摘Water is considered to be an inhibitor of CO oxidation.The mechanism of retarding the reaction is thought to contribute to the practical application of CO oxidation,which is investigated by constructing the coupling of Au nanoparticles and defective CuO to form metal-support interactions(MSI)and oxygen vacancies(OVs).The introduction of Au forms a new CO adsorption site,which successfully solves the competitive adsorption problem of CO with H2O and O_(2).Due to the coupling of MSI and OVs,the reduced ability of catalyst and the activation and migration ability of oxygen are enhanced simultaneously.Au-CuO has the ability to oxidize CO at room temperature with high stability under a humid environment.Theoretical calculation confirmed the competitive adsorption and the influence of MSI and OVs coupling on the catalyst performance.The mechanism of water resistance in CO catalytic oxidation was also explained.
基金supported by the National Natural Science Foundation of China(22075002)National Postdoctoral Program for Innovative Talents(BX2021002)the China Postdoctoral Science Foundation(2021M690194)。
文摘Rechargeable aluminum batteries(RABs)have attracted great interest as one of the most promising candidates for large-scale energy storage because of their high volumetric capacity,low cost,high safety and the abundance of aluminum.However,compared with the aluminum anodes,the cathode materials face more problems including low specific capacity,relatively sluggish kinetics in most host structures and/or limited cycle lifespan,which pose the major challenge for RABs in further practical applications.During the past years,intensive efforts have been devoted to developing new cathode materials and/or designing engineered nanostructures to greatly improve RABs’electrochemical performances.In addition to nanotechnologybased electrode structure designs,the intrinsic chemical structures and charge storage mechanisms of cathode materials play an equally crucial role,if not more,in revolutionizing the battery performances.This review,here,focuses on current understandings into the charge storage mechanisms of cathode materials in RABs from a chemical reaction point of view.First,the fundamental chemistry,charge storage mechanisms and design principles of RAB cathode materials are highlighted.Based on different ion charge carriers,the current cathode materials are classified into four groups,including Al^(3+)-hosting,Al Cl_(4)^(-)-hosting,Al Cl_(2)^(+)/Al Cl_(2)^(+)-hosting,and Cl^(-)-hosting cathode materials.Next,the respective typical electrode structures,optimization strategies,electrochemical performances and charge storage mechanisms are discussed in detail to establish their chemistry-structure-property relationships.This review on current understandings of the cathode charge storage mechanisms will lay the ground and hopefully set new directions into the rational design of high-performance cathode materials in RABs,and open up new opportunities for designing new electrolyte systems with respect to the targeted cathode systems.