Stretchable conductive fibers have attracted much attention due to their potential use in wearable electronics.However,the ultrahigh strain insensitive conductivity is hindered by mechanical mismatch in Young’s modul...Stretchable conductive fibers have attracted much attention due to their potential use in wearable electronics.However,the ultrahigh strain insensitive conductivity is hindered by mechanical mismatch in Young’s modulus and failure of stretchable structures under large deformation.This challenge is addressed with a conductive and elastic multifilament made of the polyurethane monofilaments that are surface-coated with buckled polypyrrole(PPy)of which flexibility is improved by sodium sulfosalicylate.Such parallel conductive monofilaments with PPy buckling on surface reduce the influence of cracks in the conductive coating on the overall conductivity,displaying an ultra-high strain insensitive behavior(quality factor Q=10.9).Remarkably,various complex forms of wearable electronic textiles made by this conductive multifilament maintain the strain-insensitive behavior of the original multifilament,even upon the large deformation of human joint.This multifilament with wrinkled PPy has attractive advantages in the application of super-stretched wearable electronic devices.展开更多
Human phenomics is defned as the comprehensive collection of observable phenotypes and characteristics infuenced by a complex interplay among factors at multiple scales.These factors include genes,epigenetics at the m...Human phenomics is defned as the comprehensive collection of observable phenotypes and characteristics infuenced by a complex interplay among factors at multiple scales.These factors include genes,epigenetics at the microscopic level,organs,microbiome at the mesoscopic level,and diet and environmental exposures at the macroscopic level.“Phenomic imaging”utilizes various imaging techniques to visualize and measure anatomical structures,biological functions,metabolic processes,and biochemical activities across diferent scales,both in vivo and ex vivo.Unlike conventional medical imaging focused on disease diagnosis,phenomic imaging captures both normal and abnormal traits,facilitating detailed correlations between macro-and micro-phenotypes.This approach plays a crucial role in deciphering phenomes.This review provides an overview of diferent phenomic imaging modalities and their applications in human phenomics.Additionally,it explores the associations between phenomic imaging and other omics disciplines,including genomics,transcriptomics,proteomics,immunomics,and metabolomics.By integrating phenomic imaging with other omics data,such as genomics and metabolomics,a comprehensive understanding of biological systems can be achieved.This integration paves the way for the development of new therapeutic approaches and diagnostic tools.展开更多
Imaging-derived phenotypes(IDPs)have been increasingly used in population-based cohort studies in recent years.As widely reported,magnetic resonance imaging(MRI)is an important imaging modality for assessing the anato...Imaging-derived phenotypes(IDPs)have been increasingly used in population-based cohort studies in recent years.As widely reported,magnetic resonance imaging(MRI)is an important imaging modality for assessing the anatomical structure and function of the brain with high resolution and excellent soft-tissue contrast.The purpose of this article was to describe the imaging protocol of the brain MRI in the China Phenobank Project(CHPP).Each participant underwent a 30-min brain MRI scan as part of a 2-h whole-body imaging protocol in CHPP.The brain imaging sequences included T1-magnetization that prepared rapid gradient echo,T2 fuid-attenuated inversion-recovery,magnetic resonance angiography,difusion MRI,and resting-state functional MRI.The detailed descriptions of image acquisition,interpretation,and post-processing were provided in this article.The measured IDPs included volumes of brain subregions,cerebral vessel geometrical parameters,microstructural tracts,and function connectivity metrics.展开更多
基金support from the Natural Science Foundation of Shanghai (Grant No.21ZR1401300)the National Natural Science Foundation of China (Grant No.52005097)+4 种基金the Fundamental Research Funds for the Central Universities (2232022A-05)the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University (CUSF-DH-D-2021022)the 111 Project (Grant No.BP0719035)the Fundamental Research Funds for DHU Distinguished Young Professor ProgramThe technical assistance of Jing。
文摘Stretchable conductive fibers have attracted much attention due to their potential use in wearable electronics.However,the ultrahigh strain insensitive conductivity is hindered by mechanical mismatch in Young’s modulus and failure of stretchable structures under large deformation.This challenge is addressed with a conductive and elastic multifilament made of the polyurethane monofilaments that are surface-coated with buckled polypyrrole(PPy)of which flexibility is improved by sodium sulfosalicylate.Such parallel conductive monofilaments with PPy buckling on surface reduce the influence of cracks in the conductive coating on the overall conductivity,displaying an ultra-high strain insensitive behavior(quality factor Q=10.9).Remarkably,various complex forms of wearable electronic textiles made by this conductive multifilament maintain the strain-insensitive behavior of the original multifilament,even upon the large deformation of human joint.This multifilament with wrinkled PPy has attractive advantages in the application of super-stretched wearable electronic devices.
基金Shanghai Municipal Science and Technology Major Project(2017SHZDZX01).
文摘Human phenomics is defned as the comprehensive collection of observable phenotypes and characteristics infuenced by a complex interplay among factors at multiple scales.These factors include genes,epigenetics at the microscopic level,organs,microbiome at the mesoscopic level,and diet and environmental exposures at the macroscopic level.“Phenomic imaging”utilizes various imaging techniques to visualize and measure anatomical structures,biological functions,metabolic processes,and biochemical activities across diferent scales,both in vivo and ex vivo.Unlike conventional medical imaging focused on disease diagnosis,phenomic imaging captures both normal and abnormal traits,facilitating detailed correlations between macro-and micro-phenotypes.This approach plays a crucial role in deciphering phenomes.This review provides an overview of diferent phenomic imaging modalities and their applications in human phenomics.Additionally,it explores the associations between phenomic imaging and other omics disciplines,including genomics,transcriptomics,proteomics,immunomics,and metabolomics.By integrating phenomic imaging with other omics data,such as genomics and metabolomics,a comprehensive understanding of biological systems can be achieved.This integration paves the way for the development of new therapeutic approaches and diagnostic tools.
基金the Shanghai Municipal Science and Technology Major Project(No.2017SHZDZX01).
文摘Imaging-derived phenotypes(IDPs)have been increasingly used in population-based cohort studies in recent years.As widely reported,magnetic resonance imaging(MRI)is an important imaging modality for assessing the anatomical structure and function of the brain with high resolution and excellent soft-tissue contrast.The purpose of this article was to describe the imaging protocol of the brain MRI in the China Phenobank Project(CHPP).Each participant underwent a 30-min brain MRI scan as part of a 2-h whole-body imaging protocol in CHPP.The brain imaging sequences included T1-magnetization that prepared rapid gradient echo,T2 fuid-attenuated inversion-recovery,magnetic resonance angiography,difusion MRI,and resting-state functional MRI.The detailed descriptions of image acquisition,interpretation,and post-processing were provided in this article.The measured IDPs included volumes of brain subregions,cerebral vessel geometrical parameters,microstructural tracts,and function connectivity metrics.