期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
铋基光催化剂在太阳能转换中的合理设计
1
作者 崔元映 张金锋 +2 位作者 褚海亮 孙立贤 代凯 《物理化学学报》 SCIE CAS CSCD 北大核心 2024年第12期1-2,共2页
作为一种清洁的太阳能转换技术,半导体光催化为应对世界能源危机和环境污染治理提供了重要技术途径。而在不同类型的光催化剂中,铋基材料凭借其特有的晶体结构、可调的能带宽度、多样的化学组成,以及在光催化领域所具有的广泛前景而备... 作为一种清洁的太阳能转换技术,半导体光催化为应对世界能源危机和环境污染治理提供了重要技术途径。而在不同类型的光催化剂中,铋基材料凭借其特有的晶体结构、可调的能带宽度、多样的化学组成,以及在光催化领域所具有的广泛前景而备受关注。尽管如此,当前关于铋基光催化剂的开发还不够完善,仍需要大量研究和讨论。为了提高铋基材料的催化性能,并克服目前低光利用效率、选择性差和成本高的挑战,对其结构、合成和结构调控方法的全面理解必不可少。因此本文系统论述了在太阳能应用领域,铋基光催化剂的合理设计与最新进展。这篇文章首先概述了多种铋基光催化剂的近期科研动态,包括层状铋化合物、铋元素、BiVO_(4)、Bi_(2)S_(2)和Bi_(2)O_(3)等材料。其次,归纳了铋基光催化剂的主要合成方案,并介绍了提高催化活性的结构调控方法。接着,强调了铋基材料在CO_(2)还原、光解水、N_(2)固定、NOX去除、H_(2)O_(2)生产以及选择性有机反应等多种领域潜力巨大。此外,文章还深入探讨了用于铋基光催化剂的先进原位分析手段。最后,本综述明确了现存的发展障碍,并预测了铋基光催化剂的未来发展前景。本综述有望为深入理解和合理设计高性能铋基材料提供全面指导,推动环境与能源领域的创新应用,助力实现双碳目标和可持续发展。 展开更多
关键词 光催化 异质结 电荷分离 应用
在线阅读 下载PDF
Borohydride Ammoniate Solid Electrolyte Design for All-Solid-State Mg Batteries 被引量:1
2
作者 Yuepeng Pang Zhengfang Nie +5 位作者 Fen Xu lixian sun Junhe Yang Dalin sun Fang Fang Shiyou Zheng 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期100-106,共7页
Searching for novel solid electrolytes is of great importance and challenge for all-solid-state Mg batteries.In this work,we develop an amorphous Mg borohydride ammoniate,Mg(BH_(4))_(2)·2NH_(3),as a solid Mg elec... Searching for novel solid electrolytes is of great importance and challenge for all-solid-state Mg batteries.In this work,we develop an amorphous Mg borohydride ammoniate,Mg(BH_(4))_(2)·2NH_(3),as a solid Mg electrolyte that prepared by a NH_(3)redistribution between 3D framework-γ-Mg(BH_(4))_(2)and Mg(BH_(4))_(2)·6NH_(3).Amorphous Mg(BH_(4))_(2)·2NH_(3)exhibits a high Mg-ion conductivity of 5×10^(-4)S cm^(-1)at 75℃,which is attributed to the fast migration of abundant Mg vacancies according to the theoretical calculations.Moreover,amorphous Mg(BH_(4))_(2)·2NH_(3)shows an apparent electrochemical stability window of 0-1.4 V with the help of in-situ formed interphases,which can prevent further side reactions without hindering the Mg-ion transfer.Based on the above superiorities,amorphous Mg(BH_(4))_(2)·2NH_(3)enables the stable cycling of all-solid-state Mg cells,as the critical current density reaches 3.2 mA cm^(-2)for Mg symmetrical cells and the reversible specific capacity reaches 141 mAh g^(-1)with a coulombic efficiency of 91.7%(first cycle)for Mg||TiS_(2)cells. 展开更多
关键词 all-solid-state Mg batteries amorphization Mg borohydride ammoniate Mg vacancy migration solid electrolyte
在线阅读 下载PDF
Chalcogenide-based S-scheme heterojunction photocatalysts
3
作者 Chunguang Chen Jinfeng Zhang +3 位作者 Hailiang Chu lixian sun Graham Dawson Kai Dai 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期81-108,共28页
The unique photocatalytic mechanism of S-scheme heterojunction can be used to study new and efficient photocatalysts.By carefully selecting semiconductors for S-scheme heterojunction photocatalysts,it is possible to r... The unique photocatalytic mechanism of S-scheme heterojunction can be used to study new and efficient photocatalysts.By carefully selecting semiconductors for S-scheme heterojunction photocatalysts,it is possible to reduce the rate of photogenerated carrier recombination and increase the conversion efficiency of light into energy.Chalcogenides are a group of compounds that include sulfides and selenides(e.g.,CdS,ZnS,Bi_(2)S_(3),MoS_(2),ZnSe,CdSe,and CuSe).Chalcogenides have attracted considerable attention as heterojunction photocatalysts owing to their narrow bandgap,wide light absorption range,and excellent photoreduction properties.This paper presents a thorough analysis of S-scheme heterojunction photocatalysts based on chalcogenides.Following an introduction to the fundamental characteristics and benefits of S-scheme heterojunction photocatalysts,various chalcogenide-based S-scheme heterojunction photocatalyst synthesis techniques are summarized.These photocatalysts are used in numerous significant photocatalytic reactions,in-cluding the reduction of carbon dioxide,synthesis of hydrogen peroxide,conversion of organic matter,generation of hydrogen from water,nitrogen fixation,degradation of organic pollutants,and sterilization.In addition,cutting-edge characterization techniques,including in situ characterization techniques,are discussed to validate the steady and transient states of photocatalysts with an S-scheme heterojunction.Finally,the design and challenges of chalcogenide-based S-scheme heterojunction photocatalysts are explored and recommended in light of state-of-the-art research. 展开更多
关键词 PHOTOCATALYSIS CHALCOGENIDE S-scheme heterojunction Charge separation Application
在线阅读 下载PDF
Editorial for the special issue“Hydrogen Energy Production,Storage and Utilization”
4
作者 lixian sun 《Materials Reports(Energy)》 EI 2024年第1期1-2,共2页
Hydrogen energy has emerged as a significant energy source for accomplishing energy transformation and achieving carbon neutrality.Hydrogen production,storage and transportation are the key technologies to realize hyd... Hydrogen energy has emerged as a significant energy source for accomplishing energy transformation and achieving carbon neutrality.Hydrogen production,storage and transportation are the key technologies to realize hydrogen energy application and carbon neutralization goal.Apart from the mature technologies of fossil fuel reforming and water electrolysis,new hydrogen production methods(such as solar photolysis,biomass conversion,thermochemical circulation,etc.)have garnered widespread attention and research interest.The lack of safe and efficient hydrogen storage and utilization technology for hydrogen fuel cell systems is the major obstacle to achieving hydrogen economy.In the past decades,global researchers have conducted extensive studies on enhancing the hydrogen storage performance of materials,such as alloy,metal hydride,complex hydride,carbon-based materials,etc.,as well as the technological development of fuel cell power generation systems using solid hydrogen storage materials as hydrogen storage carriers.The themed issue entitled“Hydrogen Energy Production,Storage and Utilization”includes 10 carefully selected papers that address the most recent developments in hydrogen production and storage materials,involving catalyst design,structure characterization,hydrogen ab-/desorption performance and mechanism,and fuel cell coupling system exploit. 展开更多
关键词 ALLOY STORAGE HYDRIDE
在线阅读 下载PDF
Stabilized multifunctional phase change materials based on carbonized Cu-coated melamine foam/reduced graphene oxide framework for multiple energy conversion and storage 被引量:5
5
作者 Zhicong Hu Yongjin Zou +4 位作者 Cuili Xiang lixian sun Fen Xu Menghe Jiang Sensen Yu 《Carbon Energy》 SCIE CAS 2022年第6期1214-1227,共14页
The leakage of organic phase change materials(OPCMs)at temperatures above their melting point severely limits their large-scale application.The introduction of porous supports has been identified as an efficient leaka... The leakage of organic phase change materials(OPCMs)at temperatures above their melting point severely limits their large-scale application.The introduction of porous supports has been identified as an efficient leakageproofing method.In this study,a novel carbonized Cu-coated melamine foam(MF)/reduced graphene oxide(rGO)framework(MF/rGO/Cu-C)is constructed as a support for fabricating stabilized multifunctional OPCMs.MF serves as the supporting material,while rGO and Cu act as functional reinforcements.As a thermal energy storage material,polyethylene glycol(PEG)is encapsulated into MF/rGO/Cu-C through a vacuum-assisted impregnation method to obtain PEG@MF/rGO/Cu-C composite with excellent comprehensive performance.PEG@MF/rGO/Cu-C exhibits high phase change enthalpies of 148.3 J g^(-1)(melting)and 143.9 J g^(-1)(crystallization),corresponding to a high energy storage capability of 92.7%.Simultaneously,MF/rGO/Cu-C endues the composite with an enhanced thermal conductivity of 0.4621Wm^(-1) K^(-1),which increases by 463%compared to that of PEG@MF.Furthermore,PEG@MF/rGO/Cu-C displays great light-to-thermal and electric-to-thermal conversion capabilities,thermal cycle stability,light-tothermal cycle stability,and shape stability,showing promising application prospects in different aspects. 展开更多
关键词 Cu-coated network melamine foam PEG reduced graphene oxide stabilized multifunctional phase change materials
在线阅读 下载PDF
Biomass Homogeneity Reinforced Carbon Aerogels Derived Functional Phase-Change Materials for Solar–Thermal Energy Conversion and Storage 被引量:4
6
作者 Qingfeng Zhang Tingfeng Xia +12 位作者 Qihan Zhang Yucao Zhu Huanzhi Zhang Fen Xu lixian sun Xiaodong Wang Yongpeng Xia Xiangcheng Lin Hongliang Peng Pengru Huang Yongjin Zou Hailiang Chu Bin Li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期164-176,共13页
We deviseda functional form stable compositephase-change materials(PCMs)toachieve a three-dimensional(3D)interconnectedporous carbon aerogel structure for encapsulating polyethyleneglycol(PEG).Anovelhomogeneity reinfo... We deviseda functional form stable compositephase-change materials(PCMs)toachieve a three-dimensional(3D)interconnectedporous carbon aerogel structure for encapsulating polyethyleneglycol(PEG).Anovelhomogeneity reinforced carbonaerogel witha well-interconnected porous structure was constructed bycombining a flexible carbonresource from biomass guar gum with hard-brittle carbonfrom polyimide,to overcome severeshrinkage andpoor mechanical performance of traditionalcarbon aerogel.Thesupportingcarbon aerogel-encapsulated PEG produced thenovel composite PCMswithgood structure stability andcomprehensive energy storage performance.Theresults showed thatthecomposite PCMsdisplayed awell-defined 3Dinterconnected structure,and theirenergy storage capacities were 171.5 and169.5 J/g,which changed onlyslightlyafter 100 thermalcycles,andthe compositescould maintainthe equilibrium temperature at50.0−58.1℃ for about 760.3 s.The thermal conductivityofthe compositescould reach0.62 W m^(−1) K^(−1),which effectively enhanced the thermalresponse rate.And thecomposite PCMs exhibited good leakage-proof performance andexcellent light–thermal conversion.The compressive strengthof thecomposite PCMscan improveupto 1.602 MPa.Results indicatethatthisstrategy canbe efficiently usedtodevelop novel composite PCMswithimproved comprehensive thermalperformance and high light–thermal conversion. 展开更多
关键词 carbon aerogels composite PCMs energy storage capacity solar-thermal conversion
在线阅读 下载PDF
Rambutan-like hierarchically porous carbon microsphere as electrodematerial for high-performance supercapacitors 被引量:3
7
作者 Chunfeng Shao Shujun Qiu +6 位作者 Guiming Wu Boyang Cui Hailiang Chu Yongjin Zou Cuili Xiang Fen Xu lixian sun 《Carbon Energy》 CAS 2021年第2期361-374,共14页
Used as high-performance electrodes,both structural and compositional alterations of carbon materials play very important roles in energy conversion/storage devices.Especially in supercapacitors,hierarchical pores and... Used as high-performance electrodes,both structural and compositional alterations of carbon materials play very important roles in energy conversion/storage devices.Especially in supercapacitors,hierarchical pores and heteroatom doping in carbon materials are indispensable.Here the rambutan-like hierarchically porous carbon microspheres(PCMs)have been constructed via a hydrothermal treatment,followed by carbonization/activation.The hierarchically porous microstructure is composed of three-dimensional porous carbon networks,which give rise to a large surface area.Moreover,N and O functional groups are introduced in the as-prepared samples,which could generate the extra pseudocapacitance.Benefitting from the interconnected hierarchical and open structure,PCM exhibits outstanding capacitive performance,for example,superior specific capacitance and rate capability(397 and 288 F g^(−1) at 0.5 and 20A g^(−1),respectively),as well as long cycling stability(about 95%capacitance retention after 10,000 cycles).These encouraging results may pave an efficient way to fabricate advanced supercapacitors in the future. 展开更多
关键词 DTPA glucose hierarchically porous carbon rambutan-like microspheres SUPERCAPACITORS
在线阅读 下载PDF
Effect of Ti/Nb/Ta addition on the γ/γ' coherent microstructure in low-density and high-strength Co-Al-W-Mo-based superalloys
8
作者 Jinlin Li Jiaqi Zhang +5 位作者 Zhen Li Qing Wang Chuang Dong Fen Xu lixian sun Peter K.Liaw 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第19期174-187,共14页
Coherent precipitation of cuboidal γ'-Co3(Al,W) nanoparticles in face-centered-cubic (FCC)-γ matrix is of great significance for improving high-temperature mechanical properties of Co-based superalloys. The pres... Coherent precipitation of cuboidal γ'-Co3(Al,W) nanoparticles in face-centered-cubic (FCC)-γ matrix is of great significance for improving high-temperature mechanical properties of Co-based superalloys. The present work developed a series of low-density Co-based superalloys in light of the cluster composition formula of [Al1-(Co,Ni)12]((Al0.5(Ti/Nb/Ta)0.5W0.5)(Mo0.5Cr0.5Co0.5)), where the addition of Ti, Nb, and Ta is mixed with an equimolar ratio. It is found that these designed alloys with different combinations of Ti/Nb/Ta, Ti/Nb, and Ti/Ta possess the coherent microstructure of cuboidal γ' nanoprecipitates in the FCC-γ matrix. The microstructural evolution of coherent γ/γ' during aging at 1173 K shows that these superalloys exhibit higher thermal stability at high temperatures. Even after aging for 1000 h, there do not exist any other precipitated phases on grain boundaries, except the coarse γ' precipitates. Also, the coarsening rate constants of cuboidal γ' nanoprecipitates in these alloys are very low (K = 5.76-6.03 nm3/s), which is mainly ascribed to a moderate lattice misfit (ε = 0.28 %-0.45 %) between γ and γ'. The stable γ/γ' microstructure renders the alloys with prominent mechanical properties, as evidenced by the high yield strength of σYS = 438-445 MPa at 1143 K. A large amount of stacking faults appear after compressive deformation and Lomer-Contrell dislocation locks are also formed due to the reaction of partial dislocations of stacking faults. Moreover, the microhardness (285-320 HV) in each alloy keeps almost constant with the aging time. Besides, these superalloys have a relatively lower density (8.67-8.89 g/cm3), among which the alloy containing Ti0.25Ta0.25 also exhibits a much higher γ' solvus temperature (1361 ± 2 K) than those of the existing Co-Al-W-based superalloys. 展开更多
关键词 Co-based superalloys Coherent microstructure Lattice misfit Particle coarsening Mechanical properties
原文传递
Hydrogen storage performance of MgH_(2)under catalysis by highly dispersed nickel-nanoparticle–doped hollow spherical vanadium nitride
9
作者 Jiaao Wu Zhihao Liu +6 位作者 Haohua Zhang Yongjin Zou Bin Li Cuili Xiang lixian sun Fen Xu Ting Yu 《Journal of Magnesium and Alloys》 2024年第12期5132-5143,共12页
Magnesium hydride(MgH_(2))is an exceptional material for hydrogen storage,but its high desorption temperature and slow kinetics limit its applicability.In this study,the hydrogen storage performance of MgH_(2)was enha... Magnesium hydride(MgH_(2))is an exceptional material for hydrogen storage,but its high desorption temperature and slow kinetics limit its applicability.In this study,the hydrogen storage performance of MgH_(2)was enhanced using highly dispersed Ni-nanoparticle–doped hollow spherical vanadium nitride(Ni/VN),which was synthesized via a solvothermal process.The MgH_(2)system doped with the synthesized Ni/VN exhibited an outstanding hydrogen-storage capability.Specifically,5.6 wt.%of H_(2)was released within 1 h at a relatively low temperature of 513 K,whereas 6.4 wt.%of H_(2)was released within 180 s at 598 K,followed by an almost complete dehydrogenation after 10 min at 598 K.At 423 K,the developed material absorbed~6.0 wt.%of H_(2)within 5 min.The activation energy for dehydrogenation was determined to be 78.07±2.91 k J·mol^(-1),which was considerably lower than that of MgH_(2)produced by ball milling(120.89±5.74 k J·mol^(-1)),corresponding to a reduction of 35.4%.It was deduced that the formation of Mg_(2)Ni/Mg_(2)NiH_(4)(hydrogen pump)through the reaction of Ni nanoparticles during dehydrogenation/hydrogenation facilitated hydrogen transport and synergistically catalyzed hydrogen absorption and desorption by MgH_(2),improving its hydrogen storage capability.These findings offer novel perspectives for the utilization of MgH_(2)in large-scale applications. 展开更多
关键词 Magnesium hydride Hydrogen storage material Nitrides Catalytic mechanism
在线阅读 下载PDF
轻质储氢材料改性与热力学调控进展 被引量:6
10
作者 张晨晨 孙立贤 +4 位作者 欧阳义芳 徐芬 韦思跃 褚海亮 张焕芝 《中国科学:化学》 CAS CSCD 北大核心 2019年第7期919-932,共14页
为解决环境与能源问题,氢能作为一种理想的二次能源,受到国内外研究者的关注。众多储氢方式中,固态储氢能量密度高、安全性好,被认为是最具有发展前景的储氢方式之一。由轻质元素组成的储氢材料(包含金属氢化物、硼氢化物、铝氢化物、... 为解决环境与能源问题,氢能作为一种理想的二次能源,受到国内外研究者的关注。众多储氢方式中,固态储氢能量密度高、安全性好,被认为是最具有发展前景的储氢方式之一。由轻质元素组成的储氢材料(包含金属氢化物、硼氢化物、铝氢化物、氨基氢化物、氨硼烷)因其具有高的储能密度成为储氢领域的研究热点。本文从热力学角度出发,对几种轻质储氢材料的研究进展,尤其是材料的改性进行了总结,并对轻质储氢材料的发展趋势进行了展望。 展开更多
关键词 氢能 固态储氢 热力学 轻质储氢材料
原文传递
基于材料基因工程的储氢材料数据库构建及其应用 被引量:2
11
作者 黄鹏儒 蔡丹 +7 位作者 林怀周 刘佳溪 李子源 李彬 邹勇进 褚海亮 孙立贤 徐芬 《中国科学:化学》 CAS CSCD 北大核心 2022年第10期1863-1870,共8页
高密度储氢材料的加速研发对于我国能源经济转型、早日实现双碳目标至关重要.集成高通量计算、数据库及机器学习预测的数据驱动材料研发新范式有望缩短研发周期并降低研发成本.由于组分、结构、工艺及形貌等多重复杂性,目前储氢材料相... 高密度储氢材料的加速研发对于我国能源经济转型、早日实现双碳目标至关重要.集成高通量计算、数据库及机器学习预测的数据驱动材料研发新范式有望缩短研发周期并降低研发成本.由于组分、结构、工艺及形貌等多重复杂性,目前储氢材料相关的数据驱动性能预测研究较少,尚缺乏一个较为系统的性质性能数据库.因此,本文中我们开发了智能化的数据挖掘引擎,通过已发表的学术论文中发掘储氢材料热力学、动力学储氢性能数据,以及现有的材料基因工程数据库数据中获取含氢材料物理化学性质,并结合高通量第一性原理计算数据,构建了储氢材料性质性能数据集.基于所构建的数据集进一步建立了储氢材料数据库,并应用晶体图形神经网络等机器学习方法对储氢材料的吸放氢质量、吸放氢温度进行预测.相关工作将数据驱动的材料研发新模式与储氢材料相结合,为发展实用高效的新型储氢材料提供有效的平台支持、数据支撑、方法指引. 展开更多
关键词 储氢材料 热力学 动力学 数据库 材料设计
原文传递
铋系含氧酸盐改性镁水解制氢的动/热力学研究 被引量:1
12
作者 林杰 刘佳溪 +10 位作者 孙立贤 徐芬 罗玉梅 夏永鹏 张晨晨 程日光 魏胜 黄鹏儒 李彬 张可翔 蔡丹 《中国科学:化学》 CAS CSCD 北大核心 2022年第5期689-700,共12页
Mg基制氢材料具有来源广泛、反应温和、工艺简单、安全可控、理论产氢量高等优势,是当今的研究热点.本文提出采用高能球磨方法制备Mg-Bi系含氧酸盐Bi_(x)M_(y)O_(z)(M=Ti,V,Cr,Mo,W)复合材料以改善Mg水解制氢性能.本工作研究发现,掺杂Bi... Mg基制氢材料具有来源广泛、反应温和、工艺简单、安全可控、理论产氢量高等优势,是当今的研究热点.本文提出采用高能球磨方法制备Mg-Bi系含氧酸盐Bi_(x)M_(y)O_(z)(M=Ti,V,Cr,Mo,W)复合材料以改善Mg水解制氢性能.本工作研究发现,掺杂Bi_(2)Mo O_(6)的Mg基复合制氢材料具有较好的性能,Mg-7 wt%Bi_(2)Mo O_(6)在298.15 K的最大产氢速率为756.1 m L g^(-1)min(-1).通过引入多壁碳纳米管(CNTs)可以进一步改善Mg-Bi_(2)Mo O_(6)的产氢性能,Mg-7 wt%Bi_(2)Mo O_(6)/CNTs的最大产氢速率达2172.4 m L g^(-1)min(-1),产氢活化能下降至23.6 k J mol^(-1).X光电子能谱(XPS)分析表明Bi_(2)Mo O_(6)/CNTs与Mg在球磨过程中发生固相反应生成Bi单质.密度泛函理论(DFT)计算揭示Bi原子掺杂可改变Mg的局域电荷分布,增强Mg对H_(2)O的吸附能,并降低H_(2)O解离后H原子的吸附能,促进水解反应进行. 展开更多
关键词 水解制氢 Mg 铋系含氧酸盐 动力学 热力学
原文传递
Design of near-α Ti alloys via a cluster formula approach and their high-temperature oxidation resistance 被引量:6
13
作者 Beibei Jiang Donghui Wen +5 位作者 Qing Wang Jinda Che Chuang Dong Peter K. Liaw Fen Xu lixian sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第6期1008-1016,共9页
The multi-component composition characteristics of high-temperature near-α Ti alloys were investigated in the present work by means of a cluster formula approach. The uniform cluster formula [CN12 cluster](glue atom)... The multi-component composition characteristics of high-temperature near-α Ti alloys were investigated in the present work by means of a cluster formula approach. The uniform cluster formula [CN12 cluster](glue atom)3 for the hexagonal close-packed α solid solution was first obtained based on the Friedel oscillation theory, with a total atom number in the formula of Z = 16. Then it was analyzed that the Z values in the cluster composition formulas of typical near-α Ti alloys are within the range of Z = 16.0016.30, being perfectly consistent with the ideal Z = 16. Based on it, a series of new alloys with Z = 16 and with Nb/Ta substitution for Mo in Ti1100 alloy were designed, suction-cast into φ 6 mm rods, and then heat-treated with solid solution and aging. It was found that the alloy with co-addition of Mo, Ta and Nb has a high strength and good ductility at both room and high temperatures. More importantly, the additions of Nb and Ta can contribute to the formation of continuous and compact Al2O3 scales, resulting in an obvious improvement of oxidation resistances at both 923 K and 1073 K. The effects of Mo, Ta and Nb on the oxidation behaviors of the designed alloys at 1073 K were further discussed. 展开更多
关键词 Near-α Ti alloys Composition DESIGN CLUSTER FORMULA APPROACH OXIDATION resistance Mechanical property
原文传递
Fabrication and characterization of novel meso-porous carbon/n-octadecane as form-stable phase change materials for enhancement of phase-change behavior 被引量:4
14
作者 Yurong Liu Yongpeng Xia +7 位作者 Kang An Chaowei Huang Weiwei Cui Sheng Wei Rong Ji Fen Xu Huanzhi Zhang lixian sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第5期939-945,共7页
In this study, series of novel composite phase change materials(PCMs) were prepared through vacuum impregnation by using meso-porous carbon as a supporting matrix and n-octadcane as PCMs.The meso-porous carbon materia... In this study, series of novel composite phase change materials(PCMs) were prepared through vacuum impregnation by using meso-porous carbon as a supporting matrix and n-octadcane as PCMs.The meso-porous carbon material was prepared through one-pot co-assembly method, using resorcinol and formaldehyde as carbon precursor, tetraethoxysilane as silica sources and triblock copolymer F127 as a template. And the phase behaviors of n-octadcane confined in the nano-porous structure of the meso-porous carbon were further investigated. Fourier transform-infrared spectroscopy spectra show that n-octadecane was effectively encapsulated in the porous structure of mesoporous carbon and the composite PCMs were successfully prepared. Differential scanning calorimetry results confirm that the composite PCMs possess a good phase change behavior, fast thermal-response rate and excellent thermal cycling stability. In addition, the composite PCMs possess expected heat storage and heat release properties. All these results demonstrate that the composite PCMs possess good comprehensive property so that they can be used widely in energy storage systems. 展开更多
关键词 Phase CHANGE materials Meso-porous CARBON Microstructure Thermal performance
原文传递
Spacing graphene and Ni-Co layered double hydroxides with polypyrrole for high-performance supercapacitors 被引量:4
15
作者 Jing Liang Cuili Xiang +5 位作者 Yongjin Zou Xuebu Hu Hailiang Chu Shujun Qiu Fen Xu lixian sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第20期190-197,共8页
The urgent need of high-performance of energy storage devices triggers us to design newly class of materials.Generally,the materials feature with high conductivity,abundant pore s and excellent stability.Here,a sandwi... The urgent need of high-performance of energy storage devices triggers us to design newly class of materials.Generally,the materials feature with high conductivity,abundant pore s and excellent stability.Here,a sandwiched hybrid composite containing reduced graphene oxide,polypyrrole and Ni-Co layered double hydroxides(RGO/PPy/NiCo-LDH) was prepared in a facile way.The polypyrrole was incorporated in the two dimensional(2D) nanosheets,which not only serve as the spacer to increase the surface area,but also enhance the conductivity of the nanocomposite.The obtained architecture was employed as an advanced electrode in a supercapacitor.The electrode shows an ultrahigh specific capacitance(2534 F g^-1 at 1 A g^-1) and good cycling efficiency(78 % after 5000 cycles).Moreover,an asymmetric cell based RGO/PPy/NiCo-LDH composite demonstrates excellent electrochemical properties and good prospect of practical use. 展开更多
关键词 GRAPHENE Ni-Co layered double hydroxides POLYPYRROLE SUPERCAPACITOR Porous carbon
原文传递
Synthesis, structure and photocatalysis properties of two 3D Isostructural Ln (Ⅲ)-MOFs based 2,6-Pyridinedicarboxylic acid 被引量:5
16
作者 Chenchen Zhang Siyue Wei +3 位作者 lixian sun Fen Xu Pengru Huang Hongliang Peng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第9期1526-1531,共6页
Two new 3 D metal-organic frameworks(MOFs) named [Pr2(PDA)3-3 H2 O]-H2 O(1) and[Nd2(PDA)3-3 H2 O] H2 O(2) [2,6-Pyridinedicarboxylic acid(H2 PDA)] were synthesized by solvothermal method. They were characte... Two new 3 D metal-organic frameworks(MOFs) named [Pr2(PDA)3-3 H2 O]-H2 O(1) and[Nd2(PDA)3-3 H2 O] H2 O(2) [2,6-Pyridinedicarboxylic acid(H2 PDA)] were synthesized by solvothermal method. They were characterized by elemental analyses(EA), infrared spectroscopy(FT-IR), thermogravimetric analysis(TG), photocatalysis performance and single crystal X-ray diffraction studies(XRD).The XRD analysis indicated that MOFs(1) and(2) both belong to the monoclinic system with space group P2(1)/C. The structural model were drawn by the diamond software, and the structure revel that MOFs(1) and(2) adopt three-dimensional(3 D) frameworks constructed by cross-linking of one-dimensional(1 D) infinite chain secondary building unit(SBU) by 2,6-Pyridinedicarboxylic acid and hydrogen bond as linker. These frameworks feature channels inside which coordinated H20 solvent molecules are located. Thermogravimetric analysis showed that both MOFs are thermally stable, the photocatalytic evaluation showed the materials have a good prospect in degration methylene blue. As for complex1, the decomposition efficiency of Methylene blue was about 91.08% after 130 min and the complex 2 reach 90.45% after 160 min under the sun light. 展开更多
关键词 Metal-organic frameworks Solvothermal method Photocatalysis performance
原文传递
Robust architecture of 2D nano Mg-based borohydride on graphene with superior reversible hydrogen storage performance 被引量:3
17
作者 Xuancheng Wang Yuxiao Jia +7 位作者 Xuezhang Xiao Panpan Zhou Jiapeng Bi Jiacheng Qi Ling Lv Fen Xu lixian sun Lixin Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第15期121-130,共10页
Efficient technical strategies to synthesize hydrides with high capacity and favorable reversibility are significant for the development of novel energy materials.Herein,nano Mg-based borohydride,Mg(BH_(4))_(2),with r... Efficient technical strategies to synthesize hydrides with high capacity and favorable reversibility are significant for the development of novel energy materials.Herein,nano Mg-based borohydride,Mg(BH_(4))_(2),with robust architecture was designed and prepared by confining on graphene through a solution selfconfinement method.The Mg(BH_(4))_(2) confined on graphene displays a wrinkled 2D nano layer morphology within 8.8 nm thickness.Such 2D nano Mg(BH_(4))_(2) can start dehydrogenation at 67.9℃ with a high capacity of 12.0 wt.%,which is 190.5℃ lower than pristine Mg(BH_(4))_(2).The isothermal dehydrogenation tests and kinetics fitting results indicate the 2D nano Mg(BH_(4))_(2) possesses much-enhanced dehydrogenation kinetics of 31.3 kJ/mol activation energy,which is only half of pristine Mg(BH_(4))_(2).The thermodynamics of the 2D nano Mg(BH_(4))_(2) is also verified by PCT tests,of which Gibbs free energy value for the confined 2D nano Mg(BH_(4))_(2) is estimated to be-18.01 kJ/mol H_(2),lower than-16.36 kJ/mol H_(2) of pristine Mg(BH_(4))_(2).Importantly,the reversibility of the confined 2D nano Mg(BH_(4))_(2) is significantly enhanced to over 90%capacity retention with relatively kinetics stability during 10 cycles.The mechanism analyses manifest that Mg(BH_(4))_(2) exhibits stable 2D nano morphology during 10 cyclic tests,resulting in the greatly reduced H diffusion path and the improved de/rehydrogenation kinetics of the 2D nano Mg(BH_(4))_(2).Based on theoretical calculations of Mg(BH_(4))_(2) and the intermediate MgB12H12 confined on graphene,the charge transfer status of both samples is modified to facilitate de/rehydrogenation,thus leading to the significant thermodynamic improvements of the reversible hydrogen storage performances for 2D nano Mg(BH_(4))_(2).Such investigation of the Mg-based borohydride will illuminate prospective technical research of energy storage materials. 展开更多
关键词 Mg(BH_(4))_(2) Nano-confinement Kinetics THERMODYNAMICS Reversible hydrogen storage
原文传递
Carbon composite support improving catalytic effect of NbC nanoparticles on the low-temperature hydrogen storage performance of MgH_(2) 被引量:2
18
作者 Yuxiao Jia Xuancheng Wang +8 位作者 Leijie Hu Xuezhang Xiao Shuoqing Zhang Jiahuan He Jiacheng Qi Ling Lv Fen Xu lixian sun Lixin Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第19期65-74,共10页
Ultrafine carbon-based transition metal compounds have been widely investigated as efficient catalysts for enhancing the hydrogen storage performance of magnesium hydride.In this work,the carbon ther-mal shock method ... Ultrafine carbon-based transition metal compounds have been widely investigated as efficient catalysts for enhancing the hydrogen storage performance of magnesium hydride.In this work,the carbon ther-mal shock method is applied to synthesize the ultrafine carbon-encapsulated NbC nanoparticles with an average grain size of 17.3 nm.The MgH_(2)-10 wt%NbC/C composites show excellent low-temperature hy-drogen storage performance with the onset dehydrogenation temperature of 196.1℃,which is 92.2℃ and 98℃ lower than that of MgH_(2)-10 wt%NbC and undoped MgH_(2),respectively.Specifically,MgH_(2)-10 wt%NbC/C can absorb 6.71 wt%H_(2) at 100℃ within 30 min around and retain almost 100%reversible hydrogen desorption capacity after 10 cycles.For the catalytic mechanism,the electron transfer process between multi-valence Nb cations of in-situ formed NbH x and Mg,H atoms can greatly improve the cyclic de/rehydrogenation kinetics of MgH_(2)-NbC/C.Besides,the enhancement of dehydrogenation kinetics can also be ascribed to MgH_(2) particle refinement by NbC nanoparticles,and destabilization of the Mg-H bond caused by carbon substrate.This investigation not only proves that carbon-encapsulated NbC nanoparti-cles can greatly enhance the hydrogen storage performance of MgH_(2) but provides an idea of preparing carbon-based transition metal carbides as effective catalysts for magnesium-based hydrogen storage ma-terials. 展开更多
关键词 MgH_(2) Carbon-encapsulated NANOPARTICLES Catalyst Kinetics
原文传递
Cobalt(Ⅱ)coordination polymers as anodes for lithium-ion batteries with enhanced capacity and cycling stability 被引量:2
19
作者 Yumei Luo lixian sun +4 位作者 Fen Xu Siyue Wei Qingyong Wang Hongliang Peng Chonglin Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第8期1412-1418,共7页
Coordination polymer Co-btca (H4btca = 1,2,4,5-benzenetetracarbo ylic acid) was synthesized using a simply hydrothermal method. In particular, the as-prepared Co-btca was applied as an anode material for lithium-ion... Coordination polymer Co-btca (H4btca = 1,2,4,5-benzenetetracarbo ylic acid) was synthesized using a simply hydrothermal method. In particular, the as-prepared Co-btca was applied as an anode material for lithium-ion battery for the first time. Single crystal X-ray diffraction results indicated that the as- prepared Co-btca displayed unique layer structure, which was beneficial to transport Li ions and electrons. Also, owing to the porous structure and appropriate specific surface area, Co-btca electrode delivered a reversible capacity of 801.3 mA h/g after 50 cycles at a current density of 200 mA/g. The reversible capacity of 773.9 mA h/g was maintained after 200 cycles at a current density of 500 mA/g, exhibiting enhanced cycle stability. It also showed improved rate performance, making it a promising anode material and a new choice for lithium-ion batteries. 展开更多
关键词 Lithium-ion battery ANODE Coordination polymer CARBOXYLATE
原文传递
Binary Co–Ni oxide nanoparticle-loaded hierarchical graphitic porous carbon for high-performance supercapacitors 被引量:1
20
作者 Yin Liu Cuili Xiang +6 位作者 Hailiang Chu Shujun Qiu Jennifer McLeod Zhe She Fen Xu lixian sun Yongjin Zou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第2期135-142,共8页
Heteroatom doped graphitic porous carbon is highly desirable for electrochemical applications because of its excellent conductivity and high surface area.In this study,highly uniform Co-Ni oxide nanoparticleloaded B,N... Heteroatom doped graphitic porous carbon is highly desirable for electrochemical applications because of its excellent conductivity and high surface area.In this study,highly uniform Co-Ni oxide nanoparticleloaded B,N-doped hierarchical graphitic porous carbon was prepared through a dual pyrolysis process.Graphene dispersed chitosan hydrogel was first used as a precursor to fabricate the porous carbon(GCS–C)at 700℃.Co and Ni oxide nanoparticles were further anchored on the porous carbon through chemical reduction and calcined at high temperature.The structure of the porous carbon was optimized by the introduction of graphene to the chitosan hydrogel.The graphitic degree of the porous carbon was significantly improved by the Co and Ni species.The heteroatom B and N were found to be well doped in the composite.These features enable the composite to be an excellent candidate for supercapacitor electrodes.The composite demonstrates a high capacitance(1266.7 F g-1 at 1 A g-1)and excellent stability. 展开更多
关键词 Graphitic CARBON Graphene Metal OXIDES SUPERCAPACITOR Porous CARBON
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部