Alzheimer’s disease is a common neurodegenerative disorder defined by decreased reasoning abilities,memory loss,and cognitive deterioration.The presence of the blood-brain barrier presents a major obstacle to the dev...Alzheimer’s disease is a common neurodegenerative disorder defined by decreased reasoning abilities,memory loss,and cognitive deterioration.The presence of the blood-brain barrier presents a major obstacle to the development of effective drug therapies for Alzheimer’s disease.The use of ultrasound as a novel physical modulation approach has garnered widespread attention in recent years.As a safe and feasible therapeutic and drug-delivery method,ultrasound has shown promise in improving cognitive deficits.This article provides a summary of the application of ultrasound technology for treating Alzheimer’s disease over the past 5 years,including standalone ultrasound treatment,ultrasound combined with microbubbles or drug therapy,and magnetic resonance imaging-guided focused ultrasound therapy.Emphasis is placed on the benefits of introducing these treatment methods and their potential mechanisms.We found that several ultrasound methods can open the blood-brain barrier and effectively alleviate amyloid-βplaque deposition.We believe that ultrasound is an effective therapy for Alzheimer’s disease,and this review provides a theoretical basis for future ultrasound treatment methods.展开更多
BACKGROUND Diabetic retinopathy(DR)is one of the major eye diseases contributing to blindness worldwide.Endoplasmic reticulum(ER)stress in retinal cells is a key factor leading to retinal inflammation and vascular lea...BACKGROUND Diabetic retinopathy(DR)is one of the major eye diseases contributing to blindness worldwide.Endoplasmic reticulum(ER)stress in retinal cells is a key factor leading to retinal inflammation and vascular leakage in DR,but its mechanism is still unclear.AIM To investigate the potential mechanism of LEF1 and related RNAs in DR.METHODS ARPE-19 cells were exposed to high levels of glucose for 24 hours to simulate a diabetic environment.Intraperitoneally injected streptozotocin was used to induce the rat model of DR.The expression levels of genes and related proteins were measured by RT-qPCR and Western blotting;lnc-MGC and miR-495-3p were detected by fluorescent in situ hybridization;CCK-8 and TUNEL assays were used to detect cell viability and apoptosis;enzyme-linked immunosorbent assay was used to detect inflammatory factors;dual-luciferase gene assays were used to verify the targeting relationship;and the retina was observed by HE staining.RESULTS LEF1 and lnc-MGC have binding sites,and lnc-MGC can regulate the miR-495-3p/GRP78 molecular axis.In high glucose-treated cells,inflammation was aggravated,the intracellular reactive oxygen species concentration was increased,cell viability was reduced,apoptosis was increased,the ER response was intensified,and ferroptosis was increased.As an ER molecular chaperone,GRP78 regulates the ER and ferroptosis under the targeting of miR-495-3p,whereas inhibiting LEF1 can further downregulate the expression of lnc-MGC,increase the level of miR-495-3p,and sequentially regulate the level of GRP78 to alleviate the occurrence and development of DR.Animal experiments indicated that the knockdown of LEF1 can affect the lnc-MGC/miR-495-3p/GRP78 signaling axis to restrain the progression of DR.CONCLUSION LEF1 knockdown can regulate the miR-495-3p/GRP78 molecular axis through lnc-MGC,which affects ER stress and restrains the progression of DR and ferroptosis in retinal pigment epithelial cells.展开更多
In northern China,light and temperature are major limiting factors for plant growth,particularly during seed production and seedling establishment.While previous studies suggested a possible role for the MYB97 gene in...In northern China,light and temperature are major limiting factors for plant growth,particularly during seed production and seedling establishment.While previous studies suggested a possible role for the MYB97 gene in cold-stress,confirmation through documented evidence was lacking.In this study,we transformed the MYB97 gene from Iris laevigata into tobacco,and discovered that the gene boosted photosynthesis,photoprotection and resilience to cold.The transgenic tobacco seeds exhibited enhanced germination and accelerated seedling growth.Moreover,these plants had decreased levels of MDA(Malondialdehyde)and relative conductance,coupled with elevated concentrations of proline and soluble sugars.This response was accompanied by heightened activity of antioxidant enzymes during periods of cold stress(4 and−2℃).Exposure to low temperatures(0–15℃)also reduced heights but accentuated primary root growth in transgenic tobacco plants.Additionally,tobacco leaves showed an increased growth along with higher chlorophyll levels,net photosynthetic rates,stomatal conductance,transpiration rates and non-photochemical quenching coefficient.This study shows that IlMYB97(The MYB97 genes in I.laevigata)improves cold-resistance,and enhances photosynthesis and photoprotective ability,and thus overall growth and development.These findings would offer the genetic resources to further study cold resistance and photosynthesis.展开更多
Four different routes of asymmetric reduction rolling were conducted on AZ31 magnesium alloy to investigate their effect on the microstructure evolution and mechanical properties. Route A is the forward rolling; while...Four different routes of asymmetric reduction rolling were conducted on AZ31 magnesium alloy to investigate their effect on the microstructure evolution and mechanical properties. Route A is the forward rolling; while during routes B and C the sheets are rotated 180o in rolling direction and normal direction, respectively; route D is the unidirectional rolling. The strain states of rolled sheets were analyzed by the finite element method, while the microstructure and texture were observed using optical microscopy, X-ray diffraction and electron back-scattered diffraction techniques, and the mechanical properties were measured by tensile test. The results show that route D produced the largest effective strain. Compared with other samples, sample D exhibited a homogeneous microstructure with fine grains as well as a weak and tilted texture, in corresponding, it performed excellent tensile properties, which suggested that route D was an effective way to enhance the strength and plasticity of AZ31 sheet.展开更多
Inter-satellite link(ISL)scheduling is required by the BeiDou Navigation Satellite System(BDS)to guarantee the system ranging and communication performance.In the BDS,a great number of ISL scheduling instances must be...Inter-satellite link(ISL)scheduling is required by the BeiDou Navigation Satellite System(BDS)to guarantee the system ranging and communication performance.In the BDS,a great number of ISL scheduling instances must be addressed every day,which will certainly spend a lot of time via normal metaheuristics and hardly meet the quick-response requirements that often occur in real-world applications.To address the dual requirements of normal and quick-response ISL schedulings,a data-driven heuristic assisted memetic algorithm(DHMA)is proposed in this paper,which includes a high-performance memetic algorithm(MA)and a data-driven heuristic.In normal situations,the high-performance MA that hybridizes parallelism,competition,and evolution strategies is performed for high-quality ISL scheduling solutions over time.When in quick-response situations,the data-driven heuristic is performed to quickly schedule high-probability ISLs according to a prediction model,which is trained from the high-quality MA solutions.The main idea of the DHMA is to address normal and quick-response schedulings separately,while high-quality normal scheduling data are trained for quick-response use.In addition,this paper also presents an easy-to-understand ISL scheduling model and its NP-completeness.A seven-day experimental study with 10080 one-minute ISL scheduling instances shows the efficient performance of the DHMA in addressing the ISL scheduling in normal(in 84 hours)and quick-response(in 0.62 hour)situations,which can well meet the dual scheduling requirements in real-world BDS applications.展开更多
Scanning electron microscopy(SEM) and energy dispersive X-ray analysis(EDAX) were used to study the microstructure,microsegregation, and fluid flow tendency of the superalloy Waspaloy in the mushy zone,which had b...Scanning electron microscopy(SEM) and energy dispersive X-ray analysis(EDAX) were used to study the microstructure,microsegregation, and fluid flow tendency of the superalloy Waspaloy in the mushy zone,which had been solidified at different cooling rates. The investigation was accompanied with the calculation of Rayleigh numbers.It is found that Ti is the main segregating element and the content of Ti is the highest in the final liquid at the cooling rates of 3-6℃/min.The eta phase(η) precipitate presented in the residual liquid at the cooling rates higher than 6℃/min is responsible for the fluctuations in the curves of Ti content.The dendrite arm spacing is found to markedly decrease with the increase of cooling rate.The maximum relative Rayleigh number occurs at 10-20℃below the liquidus temperature at a cooling rate of 1℃/min,where the mushy zone is most unstable and fluid flow is most prone to occur.展开更多
BACKGROUND Developmental dysplasia of the hip is a developmental abnormality of the hip joint that results from hypoplasia during birth and continues to deteriorate after birth.AIM To observe the effects of magnesium ...BACKGROUND Developmental dysplasia of the hip is a developmental abnormality of the hip joint that results from hypoplasia during birth and continues to deteriorate after birth.AIM To observe the effects of magnesium sulfate wet compress,iodophor wet compress,and ice compress on reducing postoperative perineal swelling in children with developmental hip dislocation to provide effective nursing interventions in the clinic.METHODS A total of 120 children with hip dislocation after surgery in a third-class A hospital from January 2018 to January 2020 were randomly divided into four groups,the magnesium sulfate wet compress group,iodophor wet compress group,ice compress group and the control group.Data such as height,weight,age,duration of surgery,intraoperative blood loss,postoperative body temperature,swelling duration,pain score,and incidence of blisters were collected and analyzed.RESULTS There were no significant differences in height,weight,age,duration of surgery,intraoperative blood loss,and postoperative body temperature among the four groups of children.Statistical differences were observed between the intervention groups and the control group(P<0.05).CONCLUSION All three methods significantly reduced postoperative perineal swelling in children with developmental hip dislocation,reduced the duration of postoperative perineal swelling,reduced pain,and improved the quality of care.展开更多
Low temperature is a major stress that severely affects plant development,growth,distribution,and productivity.Here,we examined the function of a 2-oxoglutarate-dependent dioxygenase-encoding gene,SlF3HL,in chilling s...Low temperature is a major stress that severely affects plant development,growth,distribution,and productivity.Here,we examined the function of a 2-oxoglutarate-dependent dioxygenase-encoding gene,SlF3HL,in chilling stress responses in tomato(Solanum lycopersicum cv.Alisa Craig[AC]).Knockdown(KD)of SlF3HL(through RNA interference)in tomato led to increased sensitivity to chilling stress as indicated by elevated levels of electrolyte leakage,malondialdehyde(MDA)and reactive oxygen species(ROS).In addition,the KD plants had decreased levels of proline and decreased activities of peroxisome and superoxide dismutase.The expression of four cold-responsive genes was substantially reduced in the KD plants.Furthermore,seedling growth was significantly greater in AC or SlF3HLoverexpression plants than in the KD plants under either normal growth conditions with methyl jasmonate(MeJA)or chilling stress conditions.SlF3HL appears to positively regulate JA accumulation and the expression of JA biosynthetic and signaling genes under chilling stress.Together,these results suggest that SlF3HL is a positive regulator of chilling stress tolerance and functions in the chilling stress tolerance pathways,possibly by regulating JA biosynthesis,JA signaling,and ROS levels.展开更多
The paper discusses the mechanical and thermal performance manifested in natural nanorods attapulgite(ATP)reinforced Acrylonitrile butadiene styrene(ABS)nanocomposites in the process of fused deposition modeling(FDM)...The paper discusses the mechanical and thermal performance manifested in natural nanorods attapulgite(ATP)reinforced Acrylonitrile butadiene styrene(ABS)nanocomposites in the process of fused deposition modeling(FDM).Molten extrusion technique was taken to manufacture the filaments of ABS/organic-attapulgite(OAT)nanocomposites with different mass fraction and the printing operation was made by one commercial FDM three-dimensional(3D)printer.Results indicate that the mechanical performance of these FDM 3D printed specimens are improved obviously via the introduction of OAT,and tensile strength of the ABS/OAT nanocomposites parts with only 2 wt%OAT addition is enhanced by 48.1%.At the same time,the addition OAT can reduce the linear expansion coefficient and creep flexibility,and improve the thermal stability and dimensional accuracy of these FDM 3D printed parts.展开更多
[Objectives] This study was conducted to investigate the effects of different proportions of spent Pleurotus ostreatus substrate on the germination and seedling growth of mung beans. [Methods] The cellulose-degrading ...[Objectives] This study was conducted to investigate the effects of different proportions of spent Pleurotus ostreatus substrate on the germination and seedling growth of mung beans. [Methods] The cellulose-degrading bacteria HB8 and HF1 were mixed with a commercially available microbial composting agent, respectively, for the composting of spent P. ostreatus substrate. Mung beans were cultivated with different proportions of spent mushroom substrate compost and soil. The seed germination rate, plant height, fresh weight and chlorophyll content of mung bean were used as indicators to investigate the effects of the organic fertilizer from spent P. ostreatus substrate on the growth of mung bean seedlings. [Results] The addition of cellulose-degrading bacteria can significantly improve the composting effect of the spent mushroom substrate. After 8 d of cultivation of mung beans with different ratios of the mushroom substrate organic fertilizer, 50% of the organic fertilizer can make the plant height, fresh weight and leaf chlorophyll content of mung bean seedlings reach the highest value and was suitable for mung bean breeding and cultivation. [Conclusions] This study provides scientific basis and technical indicators for the rapid and harmless treatment of spent mushroom substrate and its application in crop cultivation and nursery.展开更多
In the refinery scheduling, operational transitions in mode switching are of great significance to formulate dynamic nature of production and obtain efficient schedules. The discrete-time formulation meets two main ch...In the refinery scheduling, operational transitions in mode switching are of great significance to formulate dynamic nature of production and obtain efficient schedules. The discrete-time formulation meets two main challenges in modeling: discrete approximation of time and large size of mixed-integer linear problem(MILP).In this article, a continuous-time refinery scheduling model, which involves transitions of mode switching, is presented due to these challenges. To reduce the difficulty in solving large scale MILPs resulting from the sequencing constraints, the global event-based formulation is chosen. Both transition constraints and production transitions are introduced and the numbers of key variables and constraints in both of the discrete-time and continuous-time formulations are analyzed and compared. Three cases with different lengths of time horizons and different numbers of orders are studied to show the efficiency of the proposed model.展开更多
While propagating inside the strongly scattering biological tssue,photons lose their incident directions beyond one transport mean free path(TMFP,~1 millimeter(mm)),which makes it challenging to achieve optical focusi...While propagating inside the strongly scattering biological tssue,photons lose their incident directions beyond one transport mean free path(TMFP,~1 millimeter(mm)),which makes it challenging to achieve optical focusing or clear imaging deep inside tissue.By manipulating many degrees of the incident optical wavefront,the latest optical wavefront engineering(WFE)technology compensates the wavelfront distortions caused by the scattering media and thus is toward breaking this physical limit,bringing bright perspective to many applications deep inside tissue,eg,high resolution functional/molecular imaging,optical excitation(optogenetics)and optical tweezers.However,inside the dynamic turbid media such as the biological tissue,the wavefront distortion is a fast and continuously changing process whose decorrelation rate is on timescales from milliseconds(ms)to microseconds(μs),or even faster.This requires that the WFE technology should be capable of beating this rapid process.In this review,we discuss the major challenges faced by the WFE technology due to the fast decorrelation of dynamic turbid media such as living tissue when achieving light focusing/imaging and summarize the research progress achieved to date to overcome these challenges.展开更多
BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective pr...BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective preventive measures.AIM To identify significant risk factors for ICU-AW through iterative machine learning techniques and offer recommendations for its prevention and treatment.METHODS Patients were categorized into ICU-AW and non-ICU-AW groups on the 14th day post-ICU admission.Relevant data from the initial 14 d of ICU stay,such as age,comorbidities,sedative dosage,vasopressor dosage,duration of mechanical ventilation,length of ICU stay,and rehabilitation therapy,were gathered.The relationships between these variables and ICU-AW were examined.Utilizing iterative machine learning techniques,a multilayer perceptron neural network model was developed,and its predictive performance for ICU-AW was assessed using the receiver operating characteristic curve.RESULTS Within the ICU-AW group,age,duration of mechanical ventilation,lorazepam dosage,adrenaline dosage,and length of ICU stay were significantly higher than in the non-ICU-AW group.Additionally,sepsis,multiple organ dysfunction syndrome,hypoalbuminemia,acute heart failure,respiratory failure,acute kidney injury,anemia,stress-related gastrointestinal bleeding,shock,hypertension,coronary artery disease,malignant tumors,and rehabilitation therapy ratios were significantly higher in the ICU-AW group,demonstrating statistical significance.The most influential factors contributing to ICU-AW were identified as the length of ICU stay(100.0%)and the duration of mechanical ventilation(54.9%).The neural network model predicted ICU-AW with an area under the curve of 0.941,sensitivity of 92.2%,and specificity of 82.7%.CONCLUSION The main factors influencing ICU-AW are the length of ICU stay and the duration of mechanical ventilation.A primary preventive strategy,when feasible,involves minimizing both ICU stay and mechanical ventilation duration.展开更多
BACKGROUND Propofol and sevoflurane are commonly used anesthetic agents for maintenance anesthesia during radical resection of gastric cancer.However,there is a debate concerning their differential effects on cognitiv...BACKGROUND Propofol and sevoflurane are commonly used anesthetic agents for maintenance anesthesia during radical resection of gastric cancer.However,there is a debate concerning their differential effects on cognitive function,anxiety,and depression in patients undergoing this procedure.AIM To compare the effects of propofol and sevoflurane anesthesia on postoperative cognitive function,anxiety,depression,and organ function in patients undergoing radical resection of gastric cancer.METHODS A total of 80 patients were involved in this research.The subjects were divided into two groups:Propofol group and sevoflurane group.The evaluation scale for cognitive function was the Loewenstein occupational therapy cognitive assessment(LOTCA),and anxiety and depression were assessed with the aid of the self-rating anxiety scale(SAS)and self-rating depression scale(SDS).Hemodynamic indicators,oxidative stress levels,and pulmonary function were also measured.RESULTS The LOTCA score at 1 d after surgery was significantly lower in the propofol group than in the sevoflurane group.Additionally,the SAS and SDS scores of the sevoflurane group were significantly lower than those of the propofol group.The sevoflurane group showed greater stability in heart rate as well as the mean arterial pressure compared to the propofol group.Moreover,the sevoflurane group displayed better pulmonary function and less lung injury than the propofol group.CONCLUSION Both propofol and sevoflurane could be utilized as maintenance anesthesia during radical resection of gastric cancer.Propofol anesthesia has a minimal effect on patients'pulmonary function,consequently enhancing their postoperative recovery.Sevoflurane anesthesia causes less impairment on patients'cognitive function and mitigates negative emotions,leading to an improved postoperative mental state.Therefore,the selection of anesthetic agents should be based on the individual patient's specific circumstances.展开更多
With the increasing demand for scalable and cost-effective electrochemical energy storage,aqueous zinc ion batteries(AZIBs)have a broad application prospect as an inexpensive,efficient,and naturally secure energy stor...With the increasing demand for scalable and cost-effective electrochemical energy storage,aqueous zinc ion batteries(AZIBs)have a broad application prospect as an inexpensive,efficient,and naturally secure energy storage device.However,the limitations suffered by AZIBs,including volume expansion and active materials dissolution of the cathode,electrochemical corrosion,irreversible side reactions,zinc dendrites of the anode,have seriously decelerated the civilianization process of AZIBs.Currently,polymers have tremendous superiority for application in AZIBs attributed to their exceptional chemical stability,tunable structure,high energy density and outstanding mechanical properties.Considering the expanding applications of AZIBs and the superiority of polymers,this comprehensive paper meticulously reviews the benefits of utilizing polymeric applied to cathodes and anodes,respectively.To begin with,with adjustable structure as an entry point,the correlation between polymer structure and the function of energy storage as well as optimization is deeply investigated in respect to the mechanism.Then,depending on the diversity of properties and structures,the development of polymers in AZIBs is summarized,including conductive polymers,redox polymers as well as carbon composite polymers for cathode and polyvinylidene fluoride-,carbonyl-,amino-,nitrile-based polymers for anode,and a comprehensive evaluation of the shortcomings of these strategies is provided.Finally,an outlook highlights some of the challenges posed by the application of polymers and offers insights into the potential future direction of polymers in AZIBs.It is designed to provide a thorough reference for researchers and developers working on polymer for AZIBs.展开更多
Aqueous zinc-ion batteries(AZIBs) hold great promise as a viable alternative to lithium-ion batteries owing to their high energy density and environmental friendliness.However,AZIBs are consistently plagued by the for...Aqueous zinc-ion batteries(AZIBs) hold great promise as a viable alternative to lithium-ion batteries owing to their high energy density and environmental friendliness.However,AZIBs are consistently plagued by the formation of zinc dendrites and concurrent side reactions,which significantly diminish their overall service life,In this study,the glass fiber separator(GF) is modified using zeolite imidazole salt framework-8(ZIF-8),enabling the development of efficient AZIBs.ZIF-8,which is abundant in nitrogen content,efficiently regulates the desolvation of [Zn(H_(2)O)_(6)]^(2+) to inhibit hydrogen production.Moreover,it possesses abundant nanochannels that facilitate the uniform deposition of Zn~(2+) via a localized action,thereby hindering the formation of dendrites.The insulating properties of ZIF-8 help prevent Zn^(2+) and water from trapping electron reduction at the layer surface,which reduces corrosion of the zinc anode.Consequently,ZIF-8-GF achieves the even transport of Zn^(2+) and regulates the homogeneous deposition along the Zn(002) crystal surface,thus significantly enhancing the electrochemical performance of the AZIBs,In particular,the Zn|Zn symmetric cell with the ZIF-8-GF separator delivers a stable cycle life at0.5 mA cm^(-2) of 2300 h.The Zn|ZIF-8-GF|MnO_(2) cell exhibits reduced voltage polarization while maintaining a capacity retention rate(93.4%) after 1200 cycles at 1.2 A g^(-1) The unique design of the modified diaphragm provides a new approach to realizing high-performance AZIBs.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82371886(to JY),81925020(to DM),82202797(to LW),and 82271218(to CZ).
文摘Alzheimer’s disease is a common neurodegenerative disorder defined by decreased reasoning abilities,memory loss,and cognitive deterioration.The presence of the blood-brain barrier presents a major obstacle to the development of effective drug therapies for Alzheimer’s disease.The use of ultrasound as a novel physical modulation approach has garnered widespread attention in recent years.As a safe and feasible therapeutic and drug-delivery method,ultrasound has shown promise in improving cognitive deficits.This article provides a summary of the application of ultrasound technology for treating Alzheimer’s disease over the past 5 years,including standalone ultrasound treatment,ultrasound combined with microbubbles or drug therapy,and magnetic resonance imaging-guided focused ultrasound therapy.Emphasis is placed on the benefits of introducing these treatment methods and their potential mechanisms.We found that several ultrasound methods can open the blood-brain barrier and effectively alleviate amyloid-βplaque deposition.We believe that ultrasound is an effective therapy for Alzheimer’s disease,and this review provides a theoretical basis for future ultrasound treatment methods.
基金Supported by Science and Technology Program of Yunnan Provincial Department of Science and Technology-Basic Research Program,No.202301BA070001-025.
文摘BACKGROUND Diabetic retinopathy(DR)is one of the major eye diseases contributing to blindness worldwide.Endoplasmic reticulum(ER)stress in retinal cells is a key factor leading to retinal inflammation and vascular leakage in DR,but its mechanism is still unclear.AIM To investigate the potential mechanism of LEF1 and related RNAs in DR.METHODS ARPE-19 cells were exposed to high levels of glucose for 24 hours to simulate a diabetic environment.Intraperitoneally injected streptozotocin was used to induce the rat model of DR.The expression levels of genes and related proteins were measured by RT-qPCR and Western blotting;lnc-MGC and miR-495-3p were detected by fluorescent in situ hybridization;CCK-8 and TUNEL assays were used to detect cell viability and apoptosis;enzyme-linked immunosorbent assay was used to detect inflammatory factors;dual-luciferase gene assays were used to verify the targeting relationship;and the retina was observed by HE staining.RESULTS LEF1 and lnc-MGC have binding sites,and lnc-MGC can regulate the miR-495-3p/GRP78 molecular axis.In high glucose-treated cells,inflammation was aggravated,the intracellular reactive oxygen species concentration was increased,cell viability was reduced,apoptosis was increased,the ER response was intensified,and ferroptosis was increased.As an ER molecular chaperone,GRP78 regulates the ER and ferroptosis under the targeting of miR-495-3p,whereas inhibiting LEF1 can further downregulate the expression of lnc-MGC,increase the level of miR-495-3p,and sequentially regulate the level of GRP78 to alleviate the occurrence and development of DR.Animal experiments indicated that the knockdown of LEF1 can affect the lnc-MGC/miR-495-3p/GRP78 signaling axis to restrain the progression of DR.CONCLUSION LEF1 knockdown can regulate the miR-495-3p/GRP78 molecular axis through lnc-MGC,which affects ER stress and restrains the progression of DR and ferroptosis in retinal pigment epithelial cells.
基金supported by the Science and Technology Basic Resources Investigation Program of China(2019FY100500)the Fun-damental Research Funds for the Central Universities(2572023CT18)the Natural Fund Project of Heilongjiang Province(LH 2020C 044).
文摘In northern China,light and temperature are major limiting factors for plant growth,particularly during seed production and seedling establishment.While previous studies suggested a possible role for the MYB97 gene in cold-stress,confirmation through documented evidence was lacking.In this study,we transformed the MYB97 gene from Iris laevigata into tobacco,and discovered that the gene boosted photosynthesis,photoprotection and resilience to cold.The transgenic tobacco seeds exhibited enhanced germination and accelerated seedling growth.Moreover,these plants had decreased levels of MDA(Malondialdehyde)and relative conductance,coupled with elevated concentrations of proline and soluble sugars.This response was accompanied by heightened activity of antioxidant enzymes during periods of cold stress(4 and−2℃).Exposure to low temperatures(0–15℃)also reduced heights but accentuated primary root growth in transgenic tobacco plants.Additionally,tobacco leaves showed an increased growth along with higher chlorophyll levels,net photosynthetic rates,stomatal conductance,transpiration rates and non-photochemical quenching coefficient.This study shows that IlMYB97(The MYB97 genes in I.laevigata)improves cold-resistance,and enhances photosynthesis and photoprotective ability,and thus overall growth and development.These findings would offer the genetic resources to further study cold resistance and photosynthesis.
基金Project(51471041)supported by the National Natural Science Foundation of China
文摘Four different routes of asymmetric reduction rolling were conducted on AZ31 magnesium alloy to investigate their effect on the microstructure evolution and mechanical properties. Route A is the forward rolling; while during routes B and C the sheets are rotated 180o in rolling direction and normal direction, respectively; route D is the unidirectional rolling. The strain states of rolled sheets were analyzed by the finite element method, while the microstructure and texture were observed using optical microscopy, X-ray diffraction and electron back-scattered diffraction techniques, and the mechanical properties were measured by tensile test. The results show that route D produced the largest effective strain. Compared with other samples, sample D exhibited a homogeneous microstructure with fine grains as well as a weak and tilted texture, in corresponding, it performed excellent tensile properties, which suggested that route D was an effective way to enhance the strength and plasticity of AZ31 sheet.
基金supported by the National Natural Science Foundation of China(61773120)the National Natural Science Fund for Distinguished Young Scholars of China(61525304)+2 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of China(2014-92)the Hunan Postgraduate Research Innovation Project(CX2018B022)the China Scholarship Council-Leiden University Scholarship。
文摘Inter-satellite link(ISL)scheduling is required by the BeiDou Navigation Satellite System(BDS)to guarantee the system ranging and communication performance.In the BDS,a great number of ISL scheduling instances must be addressed every day,which will certainly spend a lot of time via normal metaheuristics and hardly meet the quick-response requirements that often occur in real-world applications.To address the dual requirements of normal and quick-response ISL schedulings,a data-driven heuristic assisted memetic algorithm(DHMA)is proposed in this paper,which includes a high-performance memetic algorithm(MA)and a data-driven heuristic.In normal situations,the high-performance MA that hybridizes parallelism,competition,and evolution strategies is performed for high-quality ISL scheduling solutions over time.When in quick-response situations,the data-driven heuristic is performed to quickly schedule high-probability ISLs according to a prediction model,which is trained from the high-quality MA solutions.The main idea of the DHMA is to address normal and quick-response schedulings separately,while high-quality normal scheduling data are trained for quick-response use.In addition,this paper also presents an easy-to-understand ISL scheduling model and its NP-completeness.A seven-day experimental study with 10080 one-minute ISL scheduling instances shows the efficient performance of the DHMA in addressing the ISL scheduling in normal(in 84 hours)and quick-response(in 0.62 hour)situations,which can well meet the dual scheduling requirements in real-world BDS applications.
基金supported by the school fund of Nanjing University of Information Science and Technol ogy
文摘Scanning electron microscopy(SEM) and energy dispersive X-ray analysis(EDAX) were used to study the microstructure,microsegregation, and fluid flow tendency of the superalloy Waspaloy in the mushy zone,which had been solidified at different cooling rates. The investigation was accompanied with the calculation of Rayleigh numbers.It is found that Ti is the main segregating element and the content of Ti is the highest in the final liquid at the cooling rates of 3-6℃/min.The eta phase(η) precipitate presented in the residual liquid at the cooling rates higher than 6℃/min is responsible for the fluctuations in the curves of Ti content.The dendrite arm spacing is found to markedly decrease with the increase of cooling rate.The maximum relative Rayleigh number occurs at 10-20℃below the liquidus temperature at a cooling rate of 1℃/min,where the mushy zone is most unstable and fluid flow is most prone to occur.
文摘BACKGROUND Developmental dysplasia of the hip is a developmental abnormality of the hip joint that results from hypoplasia during birth and continues to deteriorate after birth.AIM To observe the effects of magnesium sulfate wet compress,iodophor wet compress,and ice compress on reducing postoperative perineal swelling in children with developmental hip dislocation to provide effective nursing interventions in the clinic.METHODS A total of 120 children with hip dislocation after surgery in a third-class A hospital from January 2018 to January 2020 were randomly divided into four groups,the magnesium sulfate wet compress group,iodophor wet compress group,ice compress group and the control group.Data such as height,weight,age,duration of surgery,intraoperative blood loss,postoperative body temperature,swelling duration,pain score,and incidence of blisters were collected and analyzed.RESULTS There were no significant differences in height,weight,age,duration of surgery,intraoperative blood loss,and postoperative body temperature among the four groups of children.Statistical differences were observed between the intervention groups and the control group(P<0.05).CONCLUSION All three methods significantly reduced postoperative perineal swelling in children with developmental hip dislocation,reduced the duration of postoperative perineal swelling,reduced pain,and improved the quality of care.
基金supported by the National Natural Science Foundation of China(nos.31701925 and 31671273)the China Postdoctoral Science Foundation(no.2016M602876)+2 种基金the Natural Science Foundation of Shaanxi Province of China(no.2017JQ3016)the Chinese Universities Scientific Fund(no.Z109021607)Start-up Funds of Northwest A&F University(nos.Z109021620 and Z111021601).
文摘Low temperature is a major stress that severely affects plant development,growth,distribution,and productivity.Here,we examined the function of a 2-oxoglutarate-dependent dioxygenase-encoding gene,SlF3HL,in chilling stress responses in tomato(Solanum lycopersicum cv.Alisa Craig[AC]).Knockdown(KD)of SlF3HL(through RNA interference)in tomato led to increased sensitivity to chilling stress as indicated by elevated levels of electrolyte leakage,malondialdehyde(MDA)and reactive oxygen species(ROS).In addition,the KD plants had decreased levels of proline and decreased activities of peroxisome and superoxide dismutase.The expression of four cold-responsive genes was substantially reduced in the KD plants.Furthermore,seedling growth was significantly greater in AC or SlF3HLoverexpression plants than in the KD plants under either normal growth conditions with methyl jasmonate(MeJA)or chilling stress conditions.SlF3HL appears to positively regulate JA accumulation and the expression of JA biosynthetic and signaling genes under chilling stress.Together,these results suggest that SlF3HL is a positive regulator of chilling stress tolerance and functions in the chilling stress tolerance pathways,possibly by regulating JA biosynthesis,JA signaling,and ROS levels.
基金The authors gratefully acknowledge the financial support by the Jiangsu Key R&D program(BE2019072).
文摘The paper discusses the mechanical and thermal performance manifested in natural nanorods attapulgite(ATP)reinforced Acrylonitrile butadiene styrene(ABS)nanocomposites in the process of fused deposition modeling(FDM).Molten extrusion technique was taken to manufacture the filaments of ABS/organic-attapulgite(OAT)nanocomposites with different mass fraction and the printing operation was made by one commercial FDM three-dimensional(3D)printer.Results indicate that the mechanical performance of these FDM 3D printed specimens are improved obviously via the introduction of OAT,and tensile strength of the ABS/OAT nanocomposites parts with only 2 wt%OAT addition is enhanced by 48.1%.At the same time,the addition OAT can reduce the linear expansion coefficient and creep flexibility,and improve the thermal stability and dimensional accuracy of these FDM 3D printed parts.
基金Supported by Scientific Research Fund of Hunan Provincial Education Department(15C0721)Hunan Provincial Innovation Platform Open Fund Project(16K047)Hunan Provincial Construct Program of the Key Discipline
文摘[Objectives] This study was conducted to investigate the effects of different proportions of spent Pleurotus ostreatus substrate on the germination and seedling growth of mung beans. [Methods] The cellulose-degrading bacteria HB8 and HF1 were mixed with a commercially available microbial composting agent, respectively, for the composting of spent P. ostreatus substrate. Mung beans were cultivated with different proportions of spent mushroom substrate compost and soil. The seed germination rate, plant height, fresh weight and chlorophyll content of mung bean were used as indicators to investigate the effects of the organic fertilizer from spent P. ostreatus substrate on the growth of mung bean seedlings. [Results] The addition of cellulose-degrading bacteria can significantly improve the composting effect of the spent mushroom substrate. After 8 d of cultivation of mung beans with different ratios of the mushroom substrate organic fertilizer, 50% of the organic fertilizer can make the plant height, fresh weight and leaf chlorophyll content of mung bean seedlings reach the highest value and was suitable for mung bean breeding and cultivation. [Conclusions] This study provides scientific basis and technical indicators for the rapid and harmless treatment of spent mushroom substrate and its application in crop cultivation and nursery.
基金Supported by the National Natural Science Foundation of China(61273039,21276137)the National Science Fund for Distinguished Young Scholars of China(61525304)
文摘In the refinery scheduling, operational transitions in mode switching are of great significance to formulate dynamic nature of production and obtain efficient schedules. The discrete-time formulation meets two main challenges in modeling: discrete approximation of time and large size of mixed-integer linear problem(MILP).In this article, a continuous-time refinery scheduling model, which involves transitions of mode switching, is presented due to these challenges. To reduce the difficulty in solving large scale MILPs resulting from the sequencing constraints, the global event-based formulation is chosen. Both transition constraints and production transitions are introduced and the numbers of key variables and constraints in both of the discrete-time and continuous-time formulations are analyzed and compared. Three cases with different lengths of time horizons and different numbers of orders are studied to show the efficiency of the proposed model.
文摘While propagating inside the strongly scattering biological tssue,photons lose their incident directions beyond one transport mean free path(TMFP,~1 millimeter(mm)),which makes it challenging to achieve optical focusing or clear imaging deep inside tissue.By manipulating many degrees of the incident optical wavefront,the latest optical wavefront engineering(WFE)technology compensates the wavelfront distortions caused by the scattering media and thus is toward breaking this physical limit,bringing bright perspective to many applications deep inside tissue,eg,high resolution functional/molecular imaging,optical excitation(optogenetics)and optical tweezers.However,inside the dynamic turbid media such as the biological tissue,the wavefront distortion is a fast and continuously changing process whose decorrelation rate is on timescales from milliseconds(ms)to microseconds(μs),or even faster.This requires that the WFE technology should be capable of beating this rapid process.In this review,we discuss the major challenges faced by the WFE technology due to the fast decorrelation of dynamic turbid media such as living tissue when achieving light focusing/imaging and summarize the research progress achieved to date to overcome these challenges.
基金Supported by Science and Technology Support Program of Qiandongnan Prefecture,No.Qiandongnan Sci-Tech Support[2021]12Guizhou Province High-Level Innovative Talent Training Program,No.Qiannan Thousand Talents[2022]201701.
文摘BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective preventive measures.AIM To identify significant risk factors for ICU-AW through iterative machine learning techniques and offer recommendations for its prevention and treatment.METHODS Patients were categorized into ICU-AW and non-ICU-AW groups on the 14th day post-ICU admission.Relevant data from the initial 14 d of ICU stay,such as age,comorbidities,sedative dosage,vasopressor dosage,duration of mechanical ventilation,length of ICU stay,and rehabilitation therapy,were gathered.The relationships between these variables and ICU-AW were examined.Utilizing iterative machine learning techniques,a multilayer perceptron neural network model was developed,and its predictive performance for ICU-AW was assessed using the receiver operating characteristic curve.RESULTS Within the ICU-AW group,age,duration of mechanical ventilation,lorazepam dosage,adrenaline dosage,and length of ICU stay were significantly higher than in the non-ICU-AW group.Additionally,sepsis,multiple organ dysfunction syndrome,hypoalbuminemia,acute heart failure,respiratory failure,acute kidney injury,anemia,stress-related gastrointestinal bleeding,shock,hypertension,coronary artery disease,malignant tumors,and rehabilitation therapy ratios were significantly higher in the ICU-AW group,demonstrating statistical significance.The most influential factors contributing to ICU-AW were identified as the length of ICU stay(100.0%)and the duration of mechanical ventilation(54.9%).The neural network model predicted ICU-AW with an area under the curve of 0.941,sensitivity of 92.2%,and specificity of 82.7%.CONCLUSION The main factors influencing ICU-AW are the length of ICU stay and the duration of mechanical ventilation.A primary preventive strategy,when feasible,involves minimizing both ICU stay and mechanical ventilation duration.
文摘BACKGROUND Propofol and sevoflurane are commonly used anesthetic agents for maintenance anesthesia during radical resection of gastric cancer.However,there is a debate concerning their differential effects on cognitive function,anxiety,and depression in patients undergoing this procedure.AIM To compare the effects of propofol and sevoflurane anesthesia on postoperative cognitive function,anxiety,depression,and organ function in patients undergoing radical resection of gastric cancer.METHODS A total of 80 patients were involved in this research.The subjects were divided into two groups:Propofol group and sevoflurane group.The evaluation scale for cognitive function was the Loewenstein occupational therapy cognitive assessment(LOTCA),and anxiety and depression were assessed with the aid of the self-rating anxiety scale(SAS)and self-rating depression scale(SDS).Hemodynamic indicators,oxidative stress levels,and pulmonary function were also measured.RESULTS The LOTCA score at 1 d after surgery was significantly lower in the propofol group than in the sevoflurane group.Additionally,the SAS and SDS scores of the sevoflurane group were significantly lower than those of the propofol group.The sevoflurane group showed greater stability in heart rate as well as the mean arterial pressure compared to the propofol group.Moreover,the sevoflurane group displayed better pulmonary function and less lung injury than the propofol group.CONCLUSION Both propofol and sevoflurane could be utilized as maintenance anesthesia during radical resection of gastric cancer.Propofol anesthesia has a minimal effect on patients'pulmonary function,consequently enhancing their postoperative recovery.Sevoflurane anesthesia causes less impairment on patients'cognitive function and mitigates negative emotions,leading to an improved postoperative mental state.Therefore,the selection of anesthetic agents should be based on the individual patient's specific circumstances.
基金financially supported by the National Natural Science Foundation of China(51872090,51772097,22304055)the Hebei Natural Science Fund for Distinguished Young Scholar(E2019209433)+4 种基金the Youth Talent Program of Hebei Provincial Education Department(BJ2018020)the Natural Science Foundation of Hebei Province(E2020209151,E2022209158,B2022209026,D2023209012)the Central Guiding Local Science and Technology Development Fund Project(236Z4409G)the Science and Technology Project of Hebei Education Department(SLRC2019028)the Science and Technology Planning Project of Tangshan City(22130227H)。
文摘With the increasing demand for scalable and cost-effective electrochemical energy storage,aqueous zinc ion batteries(AZIBs)have a broad application prospect as an inexpensive,efficient,and naturally secure energy storage device.However,the limitations suffered by AZIBs,including volume expansion and active materials dissolution of the cathode,electrochemical corrosion,irreversible side reactions,zinc dendrites of the anode,have seriously decelerated the civilianization process of AZIBs.Currently,polymers have tremendous superiority for application in AZIBs attributed to their exceptional chemical stability,tunable structure,high energy density and outstanding mechanical properties.Considering the expanding applications of AZIBs and the superiority of polymers,this comprehensive paper meticulously reviews the benefits of utilizing polymeric applied to cathodes and anodes,respectively.To begin with,with adjustable structure as an entry point,the correlation between polymer structure and the function of energy storage as well as optimization is deeply investigated in respect to the mechanism.Then,depending on the diversity of properties and structures,the development of polymers in AZIBs is summarized,including conductive polymers,redox polymers as well as carbon composite polymers for cathode and polyvinylidene fluoride-,carbonyl-,amino-,nitrile-based polymers for anode,and a comprehensive evaluation of the shortcomings of these strategies is provided.Finally,an outlook highlights some of the challenges posed by the application of polymers and offers insights into the potential future direction of polymers in AZIBs.It is designed to provide a thorough reference for researchers and developers working on polymer for AZIBs.
基金financially supported by National Natural Science Foundation of China(No.51872090,51772097)Hebei Natural Science Fund for Distinguished Young Scholar(No.E2019209433)+2 种基金Youth Talent Program of Hebei Provincial Education Department(No.BJ2018020)Natural Science Foundation of Hebei Province(No.E2020209151)the financial support from Donghua University(101-08-0241022,23D210105,and 101-07-005759)。
文摘Aqueous zinc-ion batteries(AZIBs) hold great promise as a viable alternative to lithium-ion batteries owing to their high energy density and environmental friendliness.However,AZIBs are consistently plagued by the formation of zinc dendrites and concurrent side reactions,which significantly diminish their overall service life,In this study,the glass fiber separator(GF) is modified using zeolite imidazole salt framework-8(ZIF-8),enabling the development of efficient AZIBs.ZIF-8,which is abundant in nitrogen content,efficiently regulates the desolvation of [Zn(H_(2)O)_(6)]^(2+) to inhibit hydrogen production.Moreover,it possesses abundant nanochannels that facilitate the uniform deposition of Zn~(2+) via a localized action,thereby hindering the formation of dendrites.The insulating properties of ZIF-8 help prevent Zn^(2+) and water from trapping electron reduction at the layer surface,which reduces corrosion of the zinc anode.Consequently,ZIF-8-GF achieves the even transport of Zn^(2+) and regulates the homogeneous deposition along the Zn(002) crystal surface,thus significantly enhancing the electrochemical performance of the AZIBs,In particular,the Zn|Zn symmetric cell with the ZIF-8-GF separator delivers a stable cycle life at0.5 mA cm^(-2) of 2300 h.The Zn|ZIF-8-GF|MnO_(2) cell exhibits reduced voltage polarization while maintaining a capacity retention rate(93.4%) after 1200 cycles at 1.2 A g^(-1) The unique design of the modified diaphragm provides a new approach to realizing high-performance AZIBs.