期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Electrolyte engineering for optimizing anode/electrolyte interface towards superior aqueous zinc-ion batteries:A review
1
作者 Hua-ming YU Dong-ping CHEN +6 位作者 Li-jin ZHANG Shao-zhen HUANG liang-jun zhou Gui-chao KUANG Wei-feng WEI Li-bao CHEN Yue-jiao CHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3118-3150,共33页
Aqueous zinc-ion batteries(AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety,cost-effectiveness and environmental friendliness.However,issues such as dendrit... Aqueous zinc-ion batteries(AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety,cost-effectiveness and environmental friendliness.However,issues such as dendrite growth,hydrogen evolution reaction,and interfacial passivation occurring at the anode/electrolyte interface(AEI) have hindered their practical application.Constructing a stable AEI plays a key role in regulating zinc deposition and improving the cycle life of AZIBs.The fundamentals of AEI and the challenges faced by the Zn anode due to unstable interfaces are discussed.A comprehensive summary of electrolyte regulation strategies by electrolyte engineering to achieve a stable Zn anode is provided.The effectiveness evaluation techniques for stable AEI are also analyzed,including the interfacial chemistry and surface morphology evolution of the Zn anode.Finally,suggestions and perspectives for future research are offered about enabling a durable and stable AEI via electrolyte engineering,which may pave the way for developing high-performance AZIBs. 展开更多
关键词 aqueous zinc-ion battery anode/electrolyte interface zinc anode aqueous electrolyte electrolyte engineering electrolyte additives
在线阅读 下载PDF
Enhancing Na^(+) diffusion dynamics and structural stability of O3-NaMn_(0.5)Ni_(0.5)O_(2)cathode by Sc and Zn dual-substitution
2
作者 Bin-bin WANG Yi-ming FENG +8 位作者 Xin LUO Qun HUANG Zi-xing HOU Ya-qin WU Peng-yu WANG Yu-yang QI Qing-fei MENG Wei-feng WEI liang-jun zhou 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3344-3357,共14页
Sc and Zn were introduced into O3-NaMn_(0.5)Ni_(0.5)O_(2)(NaMN)using the combination of solution combustion and solid-state method.The effect of Sc and Zn dual-substitution on Na^(+) diffusion dynamics and structural ... Sc and Zn were introduced into O3-NaMn_(0.5)Ni_(0.5)O_(2)(NaMN)using the combination of solution combustion and solid-state method.The effect of Sc and Zn dual-substitution on Na^(+) diffusion dynamics and structural stability of NaMN was investigated.The physicochemical characterizations suggest that the introduction of Sc and Zn broaden Na^(+) diffusion channels and weaken the Na—O bonds,thereby facilitating the diffusion of sodium ions.Simulations indicate that the Sc and Zn dual-substitution decreases the diffusion barrier of Na-ions and improves the conductivity of the material.The dual-substituted NaMn_(0.5)Ni_(0.4)Sc_(0.04)Zn_(0.04)O_(2)(Na MNSZ44)cathode delivers impressive cycle stability with capacity retention of 71.2%after 200 cycles at 1C and 54.8%after 400 cycles at 5C.Additionally,the full cell paired with hard carbon anode exhibits a remarkable long-term cycling stability,showing capacity retention of 64.1%after 250 cycles at 1C.These results demonstrate that Sc and Zn dual-substitution is an effective strategy to improve the Na^(+) diffusion dynamics and structural stability of NaMN. 展开更多
关键词 layered oxide cathode Sc and Zn dual-substitution structural stability Na^(+)diffusion dynamics
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部