This study focused on differences in vehicle-to-vehicle radio channel character- istics in the same region but different traffic density and speeds at 5.9 GHz (congestion and non-congestion). The continuous measurem...This study focused on differences in vehicle-to-vehicle radio channel character- istics in the same region but different traffic density and speeds at 5.9 GHz (congestion and non-congestion). The continuous measurement campaign was conducted on a city expressway through the complex dense urban area in Wu- hart, China. Small-scale channel characteris- tics including power delay profile, amplitude fading distribution, K-factor, delay spread and Doppler shift were obtained, respectively. Spe- cifically, the cumulative distribution function of root mean square delay spreads and root mean square Doppler spreads in the non-con- gested scenario and congested scenario were all fitted well with Lognormal distribution. We also found out that different intensity of traffic and speed of vehicles have little effect on root mean square delay spreads, but have a big im- pact on root mean square Doppler spreads and level crossing rate. According to estimation outcomes, the V2V channel characteristics for urban areas in Chinese big city were differ- ent from the previous measured results under similar scenarios in Europe. Delay spread and level crossing rate in this study can provide significant references to design the wireless communication system for vehicle-to-vehicle channel.展开更多
Conformal thin-film sensors enable precise monitoring of the operating conditions of components in extreme environments.However,the development of these sensors encounters major challenges,especially in uniformly appl...Conformal thin-film sensors enable precise monitoring of the operating conditions of components in extreme environments.However,the development of these sensors encounters major challenges,especially in uniformly applying multiple film layers on complex metallic surfaces and accurately capturing diverse operational parameters.This work reports a multi-sensor design and multi-layer additive manufacturing process targeting spherical metallic substrates.The proposed high-temperature dip-coating and self-leveling fabrication process achieves high-temperature thin-film coatings with excellent uniformity,high-temperature electrical insulation,and adhesion properties.The fabricated Ag/Pt thin film thermocouple arrays and a heat flux sensor exhibit a maximum temperature resistance of up to 960℃,with thermoelectric potential outputs and hightemperature resistance closely mirroring those of wire-based Ag/Pt thermocouples.Harsh environmental testing was conducted using high-power lasers and a flame gun.The results show that the array of thin-film conformal thermocouples more accurately reflected temperature changes at different points on a spherical surface.The heat flux sensors achieve responses within 95 ms and with-stand environments with heat fluxes over 1.2 MW/m^(2).The proposed multi-sensor design and fabrication method offers promising monitoring applications in harsh environments,including aerospace and nuclear power.展开更多
Monitoring health conditions over a human body to detect anomalies is a multidisciplinary task,which involves anatomy,artificial intelligence,and sensing and computing networks.A wearable wireless sensor network(WWSN)...Monitoring health conditions over a human body to detect anomalies is a multidisciplinary task,which involves anatomy,artificial intelligence,and sensing and computing networks.A wearable wireless sensor network(WWSN)turns into an emerging technology,which is capable of acquiring dynamic data related to a human body’s physiological conditions.The collected data can be applied to detect anomalies in a patient,so that he or she can receive an early alert about the adverse trend of the health condition,and doctors can take preventive actions accordingly.In this paper,a new WWSN for anomaly detections of health conditions has been proposed,system architecture and network has been discussed,the detecting model has been established and a set of algorithms have been developed to support the operation of the WWSN.The novelty of the detected model lies in its relevance to chronobiology.Anomalies of health conditions are contextual and assessed not only based on the time and spatial correlation of the collected data,but also based on mutual relations of the data streams from different sources of sensors.A new algorithm is proposed to identify anomalies using the following procedure:(1)collected raw data is preprocessed and transferred into a set of directed graphs to represent the correlations of data streams from different sensors;(2)the directed graphs are further analyzed to identify dissimilarities and frequency patterns;(3)health conditions are quantified by a coefficient number,which depends on the identified dissimilarities and patterns.The effectiveness and reliability of the proposed WWSN has been validated by experiments in detecting health anomalies including tachycardia,arrhythmia and myocardial infarction.展开更多
Receptor for Advanced Glycation End-products(RAGE) binds to a number of ligand families to display important roles in hyperglycemia, senescence, inflammation, neurodegeneration and cancer. It is reported that RAGE reg...Receptor for Advanced Glycation End-products(RAGE) binds to a number of ligand families to display important roles in hyperglycemia, senescence, inflammation, neurodegeneration and cancer. It is reported that RAGE regulates the related biological processes via homo-dimerization by the transmembrane(TM) domain, and evidence further shows that the intracellular domain of RAGE has an influence on the dimerization activity of RAGE. In this study, we explored the underlying interaction mechanism of RAGE TM domains by multiscale coarse-grained(CG) dynamic simulations. Two switching packing modes of the TM dimeric conformations were observed. Through a series of site-directed mutations, we further emphasized the key roles of the A342xxxG346xxG349xxxT353xxL356xxxV360motif in the left-handed configuration and the L345xxxG349xxG352xxxL356motif in the right-handed configuration. In addition, we revealed that the juxtamembrane(JM) domain within JM-A375 can determine the RAGE TM dimeric structure. Overall, we provide the molecular insights into the switching dimerization of RAGE TM domains, as well as the regulation from the JM domains mediated by the anionic lipids.展开更多
Background:MicroRNAs(miRNAs)play an essential role in various biological processes and signaling pathways through the regulation of gene expression and genome stability.Recent data indicated that the next-generation s...Background:MicroRNAs(miRNAs)play an essential role in various biological processes and signaling pathways through the regulation of gene expression and genome stability.Recent data indicated that the next-generation sequencing(NGS)-based high-throughput quantification of miRNAs from biofluids provided exciting possibilities for discovering biomarkers of various diseases and might help promote the development of the early diagnosis of cancer.However,the complex process of library construction for sequencing always introduces bias,which may twist the actual expression levels of miRNAs and reach misleading conclusions.Results:We discussed the deviation issue in each step during constructing miRNA sequencing libraries and suggested many strategies to generate high-quality data by avoiding or minimizing bias.For example,improvement of adapter design(a blocking element away from the ligation end,a randomized fragment adjacent to the ligation junction and UMI)and optimization of ligation conditions(a high concentration of PEG 8000,reasonable incubation temperature and time,and the selection of ligase)in adapter ligation,high-quality input RNA samples,removal of adapter dimer(solid phase reverse immobilization(SPRI)magnetic bead,locked nucleic acid(LNA)oligonucleotide,and Phi29 DNA polymerase),PCR(linear amplification,touch-down PCR),and product purification are essential factors for achieving high-quality sequencing data.Moreover,we described several protocols that exhibit significant advantages using combinatorial optimization and commercially available low-input miRNA library preparation kits.Conclusions:Overall,our work provides the basis for unbiased high-throughput quantification of miRNAs.These data will help achieve optimal design involving miRNA profiling and provide reliable guidance for clinical diagnosis and treatment by significantly increasing the credibility of potential biomarkers.展开更多
基金supported by Norwegian Research Council(No.256309)supported by an International Cooperation Project:5G-Channel Measurement and Channel Modeling for Ocean Scenario(No.20172h0046)+3 种基金Hubei college excellent young science and technology innovation team project:Fast Varying Channel Modeling and Analysis(No.T201736)Young Scientists Found of National Natural Science Foundation of China(No.61701356)Fundamental Research Funds for the Central Universities(No.2017-JL-004)(China Scholarship Council) CSC agency for funding and the Super Radio AS
文摘This study focused on differences in vehicle-to-vehicle radio channel character- istics in the same region but different traffic density and speeds at 5.9 GHz (congestion and non-congestion). The continuous measurement campaign was conducted on a city expressway through the complex dense urban area in Wu- hart, China. Small-scale channel characteris- tics including power delay profile, amplitude fading distribution, K-factor, delay spread and Doppler shift were obtained, respectively. Spe- cifically, the cumulative distribution function of root mean square delay spreads and root mean square Doppler spreads in the non-con- gested scenario and congested scenario were all fitted well with Lognormal distribution. We also found out that different intensity of traffic and speed of vehicles have little effect on root mean square delay spreads, but have a big im- pact on root mean square Doppler spreads and level crossing rate. According to estimation outcomes, the V2V channel characteristics for urban areas in Chinese big city were differ- ent from the previous measured results under similar scenarios in Europe. Delay spread and level crossing rate in this study can provide significant references to design the wireless communication system for vehicle-to-vehicle channel.
基金supported by the National Key Research and Development Program of China(No.2022YFB3203900)。
文摘Conformal thin-film sensors enable precise monitoring of the operating conditions of components in extreme environments.However,the development of these sensors encounters major challenges,especially in uniformly applying multiple film layers on complex metallic surfaces and accurately capturing diverse operational parameters.This work reports a multi-sensor design and multi-layer additive manufacturing process targeting spherical metallic substrates.The proposed high-temperature dip-coating and self-leveling fabrication process achieves high-temperature thin-film coatings with excellent uniformity,high-temperature electrical insulation,and adhesion properties.The fabricated Ag/Pt thin film thermocouple arrays and a heat flux sensor exhibit a maximum temperature resistance of up to 960℃,with thermoelectric potential outputs and hightemperature resistance closely mirroring those of wire-based Ag/Pt thermocouples.Harsh environmental testing was conducted using high-power lasers and a flame gun.The results show that the array of thin-film conformal thermocouples more accurately reflected temperature changes at different points on a spherical surface.The heat flux sensors achieve responses within 95 ms and with-stand environments with heat fluxes over 1.2 MW/m^(2).The proposed multi-sensor design and fabrication method offers promising monitoring applications in harsh environments,including aerospace and nuclear power.
文摘Monitoring health conditions over a human body to detect anomalies is a multidisciplinary task,which involves anatomy,artificial intelligence,and sensing and computing networks.A wearable wireless sensor network(WWSN)turns into an emerging technology,which is capable of acquiring dynamic data related to a human body’s physiological conditions.The collected data can be applied to detect anomalies in a patient,so that he or she can receive an early alert about the adverse trend of the health condition,and doctors can take preventive actions accordingly.In this paper,a new WWSN for anomaly detections of health conditions has been proposed,system architecture and network has been discussed,the detecting model has been established and a set of algorithms have been developed to support the operation of the WWSN.The novelty of the detected model lies in its relevance to chronobiology.Anomalies of health conditions are contextual and assessed not only based on the time and spatial correlation of the collected data,but also based on mutual relations of the data streams from different sources of sensors.A new algorithm is proposed to identify anomalies using the following procedure:(1)collected raw data is preprocessed and transferred into a set of directed graphs to represent the correlations of data streams from different sensors;(2)the directed graphs are further analyzed to identify dissimilarities and frequency patterns;(3)health conditions are quantified by a coefficient number,which depends on the identified dissimilarities and patterns.The effectiveness and reliability of the proposed WWSN has been validated by experiments in detecting health anomalies including tachycardia,arrhythmia and myocardial infarction.
基金supported by the National Natural Science Foundation of China (Nos. 21672019, 21372026, 21402006)the Fundamental Research Funds for the Central Universities (No. XK1701)partly supported by CHEMCLOUDCOMPUTING
文摘Receptor for Advanced Glycation End-products(RAGE) binds to a number of ligand families to display important roles in hyperglycemia, senescence, inflammation, neurodegeneration and cancer. It is reported that RAGE regulates the related biological processes via homo-dimerization by the transmembrane(TM) domain, and evidence further shows that the intracellular domain of RAGE has an influence on the dimerization activity of RAGE. In this study, we explored the underlying interaction mechanism of RAGE TM domains by multiscale coarse-grained(CG) dynamic simulations. Two switching packing modes of the TM dimeric conformations were observed. Through a series of site-directed mutations, we further emphasized the key roles of the A342xxxG346xxG349xxxT353xxL356xxxV360motif in the left-handed configuration and the L345xxxG349xxG352xxxL356motif in the right-handed configuration. In addition, we revealed that the juxtamembrane(JM) domain within JM-A375 can determine the RAGE TM dimeric structure. Overall, we provide the molecular insights into the switching dimerization of RAGE TM domains, as well as the regulation from the JM domains mediated by the anionic lipids.
基金This work was supported by the National Science and Technology Major Project during the 13th 5-Year Plan Period(No.2019ZX09721001-007-002).
文摘Background:MicroRNAs(miRNAs)play an essential role in various biological processes and signaling pathways through the regulation of gene expression and genome stability.Recent data indicated that the next-generation sequencing(NGS)-based high-throughput quantification of miRNAs from biofluids provided exciting possibilities for discovering biomarkers of various diseases and might help promote the development of the early diagnosis of cancer.However,the complex process of library construction for sequencing always introduces bias,which may twist the actual expression levels of miRNAs and reach misleading conclusions.Results:We discussed the deviation issue in each step during constructing miRNA sequencing libraries and suggested many strategies to generate high-quality data by avoiding or minimizing bias.For example,improvement of adapter design(a blocking element away from the ligation end,a randomized fragment adjacent to the ligation junction and UMI)and optimization of ligation conditions(a high concentration of PEG 8000,reasonable incubation temperature and time,and the selection of ligase)in adapter ligation,high-quality input RNA samples,removal of adapter dimer(solid phase reverse immobilization(SPRI)magnetic bead,locked nucleic acid(LNA)oligonucleotide,and Phi29 DNA polymerase),PCR(linear amplification,touch-down PCR),and product purification are essential factors for achieving high-quality sequencing data.Moreover,we described several protocols that exhibit significant advantages using combinatorial optimization and commercially available low-input miRNA library preparation kits.Conclusions:Overall,our work provides the basis for unbiased high-throughput quantification of miRNAs.These data will help achieve optimal design involving miRNA profiling and provide reliable guidance for clinical diagnosis and treatment by significantly increasing the credibility of potential biomarkers.