Objective To further investigate the neuroprotective effects of five isoflavonoids from Astragalus mongholicus on xanthine (XA)/xanthine oxidase (XO)-induced injury to PC12 cells. Methods PC12 cells were damaged b...Objective To further investigate the neuroprotective effects of five isoflavonoids from Astragalus mongholicus on xanthine (XA)/xanthine oxidase (XO)-induced injury to PC12 cells. Methods PC12 cells were damaged by XA/XO. The activities of antioxidant enzymes, MTT, LDH, and GSH assays were used to evaluate the protection of these five isofavonoids. Contents of Bcl-2 family proteins were determined with flow cytometry. Results Among the five isoflavonoids including formononetin, ononin, 9, 10-dimethoxypterocarpan-3-O-β-D-glucoside, calycosin and calycosin-7-O-glucoside, calycosin and calycosin-7-O-glucoside were found to inhibit XA/XO-induced injury to PC12 cells. Their ECs0values of formononetin and calycosin were 0.05 μg/mL. Moreover, treatment with these three isoflavonoids prevented a decrease in the activities of antioxidant enzymes, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), while formononetin and calycosin could prevent a significant deletion of GSH. In addition, only calycosin and calycosin-7-O-glucoside were shown to inhibit XO activity in cell-free system, with an approximate IC50 value of 10 μg/mL and 50 μg/mL. Formononetin and calycosin had no significant infuence on Bcl-2 or Bax protein contents. Conclusion Neuroprotection of formononetin, calycosin and calycosin-7-O-glucoside may be mediated by increasing endogenous antioxidants, rather by inhibiting XO activities or by scavenging free radicals.展开更多
The brittle-ductile transition (BDT) of particlc toughened polymers was extensively studied in terms ofmorphology, strain rate, and temperature. The calculation results showed that both the critical interparticle dist...The brittle-ductile transition (BDT) of particlc toughened polymers was extensively studied in terms ofmorphology, strain rate, and temperature. The calculation results showed that both the critical interparticle distance (ID_c) andthe brittle-ductile transition temperature (T_(BD)) of polymers were a function of strain rate. The ID_c reduced nonlinearly withincreasing strain rate, whereas T_(BD) increased considerably with increasing strain rate. The effects of temperature andplasticizer concentration on BDT were discussed using a percolation model. The results were in agreement with theexperiments.展开更多
Using molecular dynamics(MD)simulations,this study explores the fluid properties of three polymer melts with the same number of entanglements,Z,achieved by adjusting the entanglement length Ne,while investigating the ...Using molecular dynamics(MD)simulations,this study explores the fluid properties of three polymer melts with the same number of entanglements,Z,achieved by adjusting the entanglement length Ne,while investigating the evolution of polymer melt conformation and entanglement under high-rate elongational flow.The identification of a master curve indicates consistent normalized linear viscoelastic behavior.Surprising findings regarding the steady-state viscosity at various elongational rates(Wi_(R)>4.7)for polymer melts with the same Z have been uncovered,challenging existing tube models.Nevertheless,the study demonstrates the potential for normalizing the steady-state elongational viscosity at high rates(Wi_(R)>4.7)by scaling with the square of the chain contour length.Additionally,the observed independence of viscosity on the elongational rate at high rates suggests that higher rates lead to a more significant alignment of polymer chains,a decrease in entanglement,and a stretching in contour length of polymer chains.Molecular-level tracking of tagged chains further supports the assumption of no entanglement under rapid elongation,emphasizing the need for further research on disentanglement in polymer melts subjected to high-rate elongational flow.These results carry significant implications for understanding and predicting the behavior of polymer melts under high-rate elongational flow conditions.展开更多
This study utilizes molecular dynamics simulation to investigate the complex dynamics of entangled semi-flexible polymer melts.The investigation reveals a significant stress overshoot phenomenon in the systems,demonst...This study utilizes molecular dynamics simulation to investigate the complex dynamics of entangled semi-flexible polymer melts.The investigation reveals a significant stress overshoot phenomenon in the systems,demonstrating the intricate interplay between shear rates,chain orientation,and chain stretching dynamics.Additionally,the identification of metastable states,characterized by a dual-plateau phenomenon in the shear stress-strain curve at specific Rouse-Weissenberg number Wi_(R),showcases the system’s responsiveness to external perturbations and its transition to stable shear banding states.Moreover,the analysis of flow field deviations uncovers a progression of shear bands with increasing Wi_(R),displaying distinct behaviors in the system’s dynamics under different shear rates and chain lengths.These findings challenge established theoretical frameworks and advocate for refined modelling approaches in polymer rheology research.展开更多
Soybean transformation by ovary-drip was improved by optimizing the length of the transformation pathway by cutting the styles. These modifications facilitated soybean transformation manipulation and improved transfor...Soybean transformation by ovary-drip was improved by optimizing the length of the transformation pathway by cutting the styles. These modifications facilitated soybean transformation manipulation and improved transformation reproducibility and efficiency. Using a linear minimal gus gene cassette as the foreign DNA, a maximum transformation frequency of 11% was obtained in flowers of the soybean cultivar ‘Liaodou 14’ with their styles mostly removed, whereas removal of only the stigma, partial style cutting and partial ovary cutting gave transformation frequencies of 0%, 1%, and 2%, respectively. An average transformation frequency of 8.2% was obtained when 619 flowers from three soybean cultivars (‘Liaodou 14’, ‘Liaodou 13’, and ‘Tiefeng 29’) were transformed by this optimized method. Southern blotting analysis showed that the gus reporter gene (encoding β-glucuronidase) was stably inherited with a simple pattern. Reverse transcription-polymerase chain reaction (RT-PCR) and GUS staining confirmed the expression of the gus gene in transgenic plants.展开更多
We have investigated the influence of the adsorption process on the dewetting behavior of the linear polystyrene film (LPS), the 3-arm star polystyrene film (3SPS) and the ring polystyrene film (RPS) on the sila...We have investigated the influence of the adsorption process on the dewetting behavior of the linear polystyrene film (LPS), the 3-arm star polystyrene film (3SPS) and the ring polystyrene film (RPS) on the silanized Si substrate. Results show that the adsorption process greatly influences the dewetting behavior of the thin polymer films. On the silanized Si substrate, the 3SPS chains exhibit stronger adsorption compared with the LPS chains and RPS chains; as a result, the wetting layer forms more easily. For LPS films, with the decrease of annealing temperature, the kinetics of polymer film changes from exponential behavior to slip dewetting. As a comparison, the stability of 3SPS and RPS films switches from slip dewetting to unusual dewetting kinetic behavior. The adsorbed nanodroplets on the solid substrate play an important role in the dewetting kinetics by reducing the driving force of dewetting and increase the resistant force of dewetting. Additionally, Brownian dynamics (BD) simulation shows that the absolute values of adsorption energy (ε) gradually increase from linear polymer (-0.3896) to ring polymer (-0.4033) and to star polymer (-0.4264), which is consistent with the results of our adsorption experiments.展开更多
We use a Monte Carlo method to study the phase and interracial behaviors of A-b-B diblocks in a blend of homopolymers, A and B, which are confined between two asymmetric hard and impenetrable walls. Our results show t...We use a Monte Carlo method to study the phase and interracial behaviors of A-b-B diblocks in a blend of homopolymers, A and B, which are confined between two asymmetric hard and impenetrable walls. Our results show that, when the interaction strength is weak, the block copolymers are uniformly distributed in the ternary mixtures under considered concentrations. Under strong interaction strength, distribution region of the block copolymers changes from a single smooth interface to a curved interface or multi-layer interface in the ternary mixtures. Furthermore, our findings show that with increasing volume fraction of A-b-B diblock copolymer (φc), copolymer profiles broaden while φc ≥ 0.4, a lamellar phase is formed and by further increasing φc, more thinner layers are observed. Moreover, the results show that, with the increase of φc, the phase interface first gradually transforms from plane to a curved surface rather than micelle or lamellar phase while with the increase of the interaction between A and B segments (CAB), the copolymer chains not only get stretched in the direction perpendicular to the interface, but also are oriented. The simulations also reveal that the difference between symmetric and asymmetric copolymers is negligible in statistics if the lengths of two blocks are comparable.展开更多
A single polymer chain in solvent confined in a slit formed by two parallel plates is studied by using molecular dynamics simulation method. The square radii of gyration and diffusion behaviors of polymers are greatly...A single polymer chain in solvent confined in a slit formed by two parallel plates is studied by using molecular dynamics simulation method. The square radii of gyration and diffusion behaviors of polymers are greatly affected by the distance between the two plates, but they do not follow the same way. The chain size decays drastically with increasing h (h is the distance between two plates), until a basin occurs, and a universal h/(Rg)o dependence for polymer chains with different degrees of polymerization can be obtained. While, for the chain's diffusion coefficient, it decays monotonously and there is no such basin-like behavior. Furthermore, we studied the radial distribution function of confined polymer chains to explain the reason why there is a difference for the decay behaviors between dynamic properties and static properties. Besides, we also give the degree of confinement dependence of the static scaling exponent for a single polymer chain. Our work provides an efficient way to estimate the dynamics and static properties of confined polymer chains, and also helps us to understand the behavior of polymer chains under confinement.展开更多
The translocation of a polymer through a pore that is much smaller than its size is a fundamental and actively researched topic in polymer physics.An understanding of the principles governing polymer translocation pro...The translocation of a polymer through a pore that is much smaller than its size is a fundamental and actively researched topic in polymer physics.An understanding of the principles governing polymer translocation provides important guidance for various practical applications,such as the separation and purification of polymers,nanopore-based single-molecule deoxyribonucleic acid/ribonucleic acid(DNA/RNA)sequencing,transmembrane transport of DNA or RNA,and infection of bacterial cells by bacteriophages.The past several decades have seen great progresses on the study of polymer translocation.Here we present an overview of theoretical,experimental,and simulational stduies on polymer translocation,focusing on the roles played by several important factors,including initial polymer conformations,external fields,polymer topology and architectures,and confinement degree.We highlight the physical mechanisms of different types of polymer translocations,and the main controversies about the basic rules of translocation dynamics.We compare and contrast the behaviors of force-induced versus flow-induced translocations and the effects of unknotted versus knotted polymers.Finally,we mention several opportunities and challenges in the study of polymer translocation.展开更多
The stability of ultrathin polymer films plays a crucial role in their technological applications.Here,we systematically investigated the influence of interfacial adsorption in physical aging and the stability of thin...The stability of ultrathin polymer films plays a crucial role in their technological applications.Here,we systematically investigated the influence of interfacial adsorption in physical aging and the stability of thin polymer films in the solvent-induced process.We further identify the stability mechanism from the theory of thin film stability.Our results show that the aging temperature and film thickness can strongly influence the stability of thin PS films in acetone vapor.Physical aging can greatly improve the stability of thin polymer films when the aging temperature T_(aging1)>T_(g).A thinner PS film more quickly reaches a stable state via physical aging.At short aging time,the formation of the adsorbed layer can reduce the polar interaction;however,it slightly influences the stability of thin polymer films in the solvent-induced process.At later aging stage,the conformational rearrangement of the polymer chains induced by the interfacial effect at the aging temperature Taging1 plays an important role in stabilizing the thin polymer films.However,at T_(aging2)<T_(g),the process of physical aging slightly influences the stability of the thin polymer films.The formation of the adsorbed layer at Taging2 can reduce the short-range polar interaction of the thin film system and cannot suppress the instability of thin polymer films in the solvent-induced process.These results provide further insight into the stable mechanism of thin polymer films in the solvent-induced process.展开更多
A mesoscopic simulation is applied to investigate the effects of hydrodynamic interactions and axial chains on the dynamics of threaded rings.The hydrodynamic interactions significantly speed up the diffusion and rela...A mesoscopic simulation is applied to investigate the effects of hydrodynamic interactions and axial chains on the dynamics of threaded rings.The hydrodynamic interactions significantly speed up the diffusion and relaxation of both free and threaded rings.The decoupled diffusion and relaxation dynamics indicate the broken of the Einstein-Stokes relationship.The diffusion of a ring threaded on a flexible chain exhibits a synergism effect compared to that on an axial rod,which originates from the self-diffusion of the ring and the reptation-like motion of the axial chain.Meanwhile,hydrodynamic interactions significantly improve the synergism effect,leading to an enhanced sliding motion of the threaded ring.The faster sliding of threaded rings suggests that the entropic barrier is negligible,which agrees well with the basic assumption of barrier-less confining tube at equilibrium in tube theory.Our results provide a new perspective on analysis of the effects of topology constraints on polymer dynamics.展开更多
The self-assembly of the linear rod-coil multiblock copolymers is studied by applying self-consistent-field lattice techniques in a three-dimensional (3D) space. Compared to the copolymer with one rod, the copolymer...The self-assembly of the linear rod-coil multiblock copolymers is studied by applying self-consistent-field lattice techniques in a three-dimensional (3D) space. Compared to the copolymer with one rod, the copolymer with more rods (mrod≥ 2) exhibits rich order-order phase transitions with increasing temperature, where the ordered morphology changes from strips to perforated lamellae and finally to lamellae. In addition, taking the copolymer with mrod = 2 as a representative, we fiarther study the effects of the volume fractions of the rods, the spacer coils and the end coils on the phase behaviors respectively, by which the detailed self-assembled mechanism of the linear rod-coil multiblock copolymers is revealed. Our results are expected to provide guidance for the design of the rod-coil materials.展开更多
The impact of ring polymer length N and the influence of interchain and intrachain interactions on the size and dynamic behaviors of ring polymers,including the structural relaxation time τ_(R) and self-diffusion coe...The impact of ring polymer length N and the influence of interchain and intrachain interactions on the size and dynamic behaviors of ring polymers,including the structural relaxation time τ_(R) and self-diffusion coefficient D,remain poorly understood at present due to a lack of systematic studies with relatively large N values.This work addressed this issue by applying dynamic Monte Carlo simulations with independently tuned interchain and intrachain interactions to investigate the size and dynamics of the ring melts with chain lengths over a wide range of 0.2N_(e)≤N≤80N_(e)(N_(e) is the entanglement length of corresponding linear chains)under different topological constraints,including all-crossing and intercrossing systems.We found that it was inappropriate to treat the unknotting constraint free energy of the ring chains in the melts as the free energy contributed by the excluded volume interactions of polymers in a good solvent.Scaling exponents of 2.5 and 1.5 reflecting the Ndependence of τ_(R) were obtained for long ring chains in non-crossing and intra-crossing systems,respectively,suggesting that the ring chains behaved as individual clusters and exhibited Zimm-like dynamics in intra-crossing systems.A single scaling exponent of-2 reflecting the Ndependence of D was obtained for ring chains in non-crossing and intra-crossing systems,indicating that the intrachain constraints affected only the value of D,and had little influence on the scaling relationship between D and N.Furthermore,the extended Stokes-Einstein relation broke down for the ring chains in the non-crossing and intra-crossing systems because the structural relaxation and translational diffusion were decoupled for the short ring systems,while both the translational diffusion and rotational relaxations,as well as diffusion at short and long time scales,were decoupled for long ring systems.展开更多
We adopt Langevin dynamics to explore the stress-structure relationship of telechelic reversible associating polymer gel during startup shear flow, with shear strengths varying from Wi=12.6 to Wi=12640. At weak shear ...We adopt Langevin dynamics to explore the stress-structure relationship of telechelic reversible associating polymer gel during startup shear flow, with shear strengths varying from Wi=12.6 to Wi=12640. At weak shear flow Wi=12.6, the shear stress proportionally increases with shear strain at short times, followed by a strain hardening behavior and then passes through a maximum(σmax, γmax) and finally decreases until it reaches the steady state. During the evolution of stress, the gel network is only slightly broken and essentially maintains its framework, and the strain hardening behavior originates from the excessive stretching of chains. On the other hand, the stress-strain curve at intermediate shear flow Wi=505.6 shows two differences from that at Wi=12.6, namely, the absence of strain hardening and a dramatic increase of stress at large strains,which is caused by the rupture of gel network at small strains and the network recovery at large strains, respectively. Finally, at very strong shear flow Wi=6319.7, the gel network is immediately broken by shear flow and the stress-strain curve exhibits similar behaviors to those of classical polymeric liquids.展开更多
The melting and crystallization behaviors of poly(e-caprolactone) (PCL) ultra-thin films with thickness from 15 ran to 8 nm were studied by AFM technique equipped with a hot-stage in real-time. It was found that m...The melting and crystallization behaviors of poly(e-caprolactone) (PCL) ultra-thin films with thickness from 15 ran to 8 nm were studied by AFM technique equipped with a hot-stage in real-time. It was found that melting can erase the spherulitic structure for polymer film with high thickness. However, annealing above the melting point can not completely erase the tree-like structure for the thinner polymer film. Generally, the structure formation of thin polymer films of PCL is controlled not only by melting and crystallization but also by dewetting during thermal annealing procedures, and dewetting predominates in the structure formation of ultra-thin films. However, the presence of tree-like morphology at 75 ℃ may be due to the strong interaction between PCL and mica surface, which may stick the PCL chains onto the mica surface during thermal annealing process. Moreover, the growth of the dendrites was investigated and it was found that crystallization is followed from a dewetted sample, and the branches did not grow with the stems. The crystallization of polymer in the ultra- thin films is a diffusion-controlled process. Both melting and crystallization behaviors of PCL in thin films are influenced by film thickness.展开更多
The real time and in situ investigation of the crystallization process and structure transitions of asymmetric crystalline-crystalline diblock copolymers from the melt was performed with synchrotron simultaneous SAXS/...The real time and in situ investigation of the crystallization process and structure transitions of asymmetric crystalline-crystalline diblock copolymers from the melt was performed with synchrotron simultaneous SAXS/WAXS. The asymmetric poly(ethylene oxide)-b-poly(ε-caprolactone) diblock copolymers were chosen for the present study. It was shown that the short blocks crystallized later than the long blocks and final lamellar structure was formed in all of the asymmetric diblock copolymers. The final lamellar structure was confirmed by AFM observation. The SAXS data were analyzed with different methods for the early stage of the crystallization. The Guinier plots indicated that there were no isolated domains formed before the formation of lamellae in the asymmetric diblock copolymers during the crystallization process. Debye- Bueche plots implied the formation of correlated domains during crystallization.展开更多
The tumbling dynamics of individual absorbed polymer chains in shear flow is studied by employing multi-particle collision dynamics simulation techniques combined with molecular dynamics simulations.We find that the d...The tumbling dynamics of individual absorbed polymer chains in shear flow is studied by employing multi-particle collision dynamics simulation techniques combined with molecular dynamics simulations.We find that the dependence of tumbling frequencies on shear rate is independent of both adsorption strength and surface corrugate.展开更多
基金supported by the Natural Science Foundation of China(No.NSFC.30670415).
文摘Objective To further investigate the neuroprotective effects of five isoflavonoids from Astragalus mongholicus on xanthine (XA)/xanthine oxidase (XO)-induced injury to PC12 cells. Methods PC12 cells were damaged by XA/XO. The activities of antioxidant enzymes, MTT, LDH, and GSH assays were used to evaluate the protection of these five isofavonoids. Contents of Bcl-2 family proteins were determined with flow cytometry. Results Among the five isoflavonoids including formononetin, ononin, 9, 10-dimethoxypterocarpan-3-O-β-D-glucoside, calycosin and calycosin-7-O-glucoside, calycosin and calycosin-7-O-glucoside were found to inhibit XA/XO-induced injury to PC12 cells. Their ECs0values of formononetin and calycosin were 0.05 μg/mL. Moreover, treatment with these three isoflavonoids prevented a decrease in the activities of antioxidant enzymes, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), while formononetin and calycosin could prevent a significant deletion of GSH. In addition, only calycosin and calycosin-7-O-glucoside were shown to inhibit XO activity in cell-free system, with an approximate IC50 value of 10 μg/mL and 50 μg/mL. Formononetin and calycosin had no significant infuence on Bcl-2 or Bax protein contents. Conclusion Neuroprotection of formononetin, calycosin and calycosin-7-O-glucoside may be mediated by increasing endogenous antioxidants, rather by inhibiting XO activities or by scavenging free radicals.
基金This work was supported by the National Natural Science Foundation of China (50073023, 20074037, 29704008, 20023003 and 50027001), the Special Funds for Major Basic Research Projects (G1999064800), and the funds for excellent youth of Jilin Province. Chi
文摘The brittle-ductile transition (BDT) of particlc toughened polymers was extensively studied in terms ofmorphology, strain rate, and temperature. The calculation results showed that both the critical interparticle distance (ID_c) andthe brittle-ductile transition temperature (T_(BD)) of polymers were a function of strain rate. The ID_c reduced nonlinearly withincreasing strain rate, whereas T_(BD) increased considerably with increasing strain rate. The effects of temperature andplasticizer concentration on BDT were discussed using a percolation model. The results were in agreement with theexperiments.
基金supported by the National Key R&D Program of China(Nos.2020YFA0713601 and 2023YFA1008800)the National Natural Science Foundation of China(Nos.22341304,22341303,22103079 and 22073092)the Cooperation Project between Jilin Province and CAS(No.2023SYHZ0003).
文摘Using molecular dynamics(MD)simulations,this study explores the fluid properties of three polymer melts with the same number of entanglements,Z,achieved by adjusting the entanglement length Ne,while investigating the evolution of polymer melt conformation and entanglement under high-rate elongational flow.The identification of a master curve indicates consistent normalized linear viscoelastic behavior.Surprising findings regarding the steady-state viscosity at various elongational rates(Wi_(R)>4.7)for polymer melts with the same Z have been uncovered,challenging existing tube models.Nevertheless,the study demonstrates the potential for normalizing the steady-state elongational viscosity at high rates(Wi_(R)>4.7)by scaling with the square of the chain contour length.Additionally,the observed independence of viscosity on the elongational rate at high rates suggests that higher rates lead to a more significant alignment of polymer chains,a decrease in entanglement,and a stretching in contour length of polymer chains.Molecular-level tracking of tagged chains further supports the assumption of no entanglement under rapid elongation,emphasizing the need for further research on disentanglement in polymer melts subjected to high-rate elongational flow.These results carry significant implications for understanding and predicting the behavior of polymer melts under high-rate elongational flow conditions.
基金financially supported by the National Key R&D Program of China(Nos.2020YFA0713601 and 2023YFA1008800)the National Natural Science Foundation of China(Nos.22341304,22341303,22103079,22073092 and 22303100)+1 种基金the Cooperation Project between Jilin Province and CAS(No.2023SYHZ0003)Additional support for Y.Lu was provided by the Youth Innovation Promotion Association of CAS(No.Y202054)。
文摘This study utilizes molecular dynamics simulation to investigate the complex dynamics of entangled semi-flexible polymer melts.The investigation reveals a significant stress overshoot phenomenon in the systems,demonstrating the intricate interplay between shear rates,chain orientation,and chain stretching dynamics.Additionally,the identification of metastable states,characterized by a dual-plateau phenomenon in the shear stress-strain curve at specific Rouse-Weissenberg number Wi_(R),showcases the system’s responsiveness to external perturbations and its transition to stable shear banding states.Moreover,the analysis of flow field deviations uncovers a progression of shear bands with increasing Wi_(R),displaying distinct behaviors in the system’s dynamics under different shear rates and chain lengths.These findings challenge established theoretical frameworks and advocate for refined modelling approaches in polymer rheology research.
基金Project (No. JY03-B-18-02) supported by the National R & D Project of Transgenic Crops of Ministry of Science and Technology of China
文摘Soybean transformation by ovary-drip was improved by optimizing the length of the transformation pathway by cutting the styles. These modifications facilitated soybean transformation manipulation and improved transformation reproducibility and efficiency. Using a linear minimal gus gene cassette as the foreign DNA, a maximum transformation frequency of 11% was obtained in flowers of the soybean cultivar ‘Liaodou 14’ with their styles mostly removed, whereas removal of only the stigma, partial style cutting and partial ovary cutting gave transformation frequencies of 0%, 1%, and 2%, respectively. An average transformation frequency of 8.2% was obtained when 619 flowers from three soybean cultivars (‘Liaodou 14’, ‘Liaodou 13’, and ‘Tiefeng 29’) were transformed by this optimized method. Southern blotting analysis showed that the gus reporter gene (encoding β-glucuronidase) was stably inherited with a simple pattern. Reverse transcription-polymerase chain reaction (RT-PCR) and GUS staining confirmed the expression of the gus gene in transgenic plants.
基金financially supported by the National Natural Science Foundation of China (Nos.51473168,21234007,21674114,51503048,51573131 and 21374077)the grant of Guizhou Education University (No.107003001455)the Natural Science Foundation of Guizhou Province (No.QKHJC[2017]1137)
文摘We have investigated the influence of the adsorption process on the dewetting behavior of the linear polystyrene film (LPS), the 3-arm star polystyrene film (3SPS) and the ring polystyrene film (RPS) on the silanized Si substrate. Results show that the adsorption process greatly influences the dewetting behavior of the thin polymer films. On the silanized Si substrate, the 3SPS chains exhibit stronger adsorption compared with the LPS chains and RPS chains; as a result, the wetting layer forms more easily. For LPS films, with the decrease of annealing temperature, the kinetics of polymer film changes from exponential behavior to slip dewetting. As a comparison, the stability of 3SPS and RPS films switches from slip dewetting to unusual dewetting kinetic behavior. The adsorbed nanodroplets on the solid substrate play an important role in the dewetting kinetics by reducing the driving force of dewetting and increase the resistant force of dewetting. Additionally, Brownian dynamics (BD) simulation shows that the absolute values of adsorption energy (ε) gradually increase from linear polymer (-0.3896) to ring polymer (-0.4033) and to star polymer (-0.4264), which is consistent with the results of our adsorption experiments.
基金supported by the National Natural Science Foundation of China(Nos.21304097,21334007and 21674113)
文摘We use a Monte Carlo method to study the phase and interracial behaviors of A-b-B diblocks in a blend of homopolymers, A and B, which are confined between two asymmetric hard and impenetrable walls. Our results show that, when the interaction strength is weak, the block copolymers are uniformly distributed in the ternary mixtures under considered concentrations. Under strong interaction strength, distribution region of the block copolymers changes from a single smooth interface to a curved interface or multi-layer interface in the ternary mixtures. Furthermore, our findings show that with increasing volume fraction of A-b-B diblock copolymer (φc), copolymer profiles broaden while φc ≥ 0.4, a lamellar phase is formed and by further increasing φc, more thinner layers are observed. Moreover, the results show that, with the increase of φc, the phase interface first gradually transforms from plane to a curved surface rather than micelle or lamellar phase while with the increase of the interaction between A and B segments (CAB), the copolymer chains not only get stretched in the direction perpendicular to the interface, but also are oriented. The simulations also reveal that the difference between symmetric and asymmetric copolymers is negligible in statistics if the lengths of two blocks are comparable.
基金financially supported by the National Natural Science Foundation of China (Nos.21074137,21104082 and 50930001)the Fund for Creative Research Groups (No.50921062)National Basic Research Program of China (973Program, 2012CB821500)
文摘A single polymer chain in solvent confined in a slit formed by two parallel plates is studied by using molecular dynamics simulation method. The square radii of gyration and diffusion behaviors of polymers are greatly affected by the distance between the two plates, but they do not follow the same way. The chain size decays drastically with increasing h (h is the distance between two plates), until a basin occurs, and a universal h/(Rg)o dependence for polymer chains with different degrees of polymerization can be obtained. While, for the chain's diffusion coefficient, it decays monotonously and there is no such basin-like behavior. Furthermore, we studied the radial distribution function of confined polymer chains to explain the reason why there is a difference for the decay behaviors between dynamic properties and static properties. Besides, we also give the degree of confinement dependence of the static scaling exponent for a single polymer chain. Our work provides an efficient way to estimate the dynamics and static properties of confined polymer chains, and also helps us to understand the behavior of polymer chains under confinement.
基金financially supported by the National Key R&D Program of China(No.2020YFA0713601)the National Natural Science Foundation of China(Nos.22073092 and 21790340)the Programs of Chinese Academy of Sciences(No.QYZDYSSW-SLH027)。
文摘The translocation of a polymer through a pore that is much smaller than its size is a fundamental and actively researched topic in polymer physics.An understanding of the principles governing polymer translocation provides important guidance for various practical applications,such as the separation and purification of polymers,nanopore-based single-molecule deoxyribonucleic acid/ribonucleic acid(DNA/RNA)sequencing,transmembrane transport of DNA or RNA,and infection of bacterial cells by bacteriophages.The past several decades have seen great progresses on the study of polymer translocation.Here we present an overview of theoretical,experimental,and simulational stduies on polymer translocation,focusing on the roles played by several important factors,including initial polymer conformations,external fields,polymer topology and architectures,and confinement degree.We highlight the physical mechanisms of different types of polymer translocations,and the main controversies about the basic rules of translocation dynamics.We compare and contrast the behaviors of force-induced versus flow-induced translocations and the effects of unknotted versus knotted polymers.Finally,we mention several opportunities and challenges in the study of polymer translocation.
基金supported by the Science Challenge Project(No.TZ2018004)the Fundamental Research Funds for the Central Universities(No.2232019D3-10)+1 种基金the National Natural Science Foundation of China(Nos.51473168,21674113,21334007,21790340)the Programs of Chinese Academy of Sciences(Nos.QYZDY-SSW-SLH027,YJKYYQ20190084).
文摘The stability of ultrathin polymer films plays a crucial role in their technological applications.Here,we systematically investigated the influence of interfacial adsorption in physical aging and the stability of thin polymer films in the solvent-induced process.We further identify the stability mechanism from the theory of thin film stability.Our results show that the aging temperature and film thickness can strongly influence the stability of thin PS films in acetone vapor.Physical aging can greatly improve the stability of thin polymer films when the aging temperature T_(aging1)>T_(g).A thinner PS film more quickly reaches a stable state via physical aging.At short aging time,the formation of the adsorbed layer can reduce the polar interaction;however,it slightly influences the stability of thin polymer films in the solvent-induced process.At later aging stage,the conformational rearrangement of the polymer chains induced by the interfacial effect at the aging temperature Taging1 plays an important role in stabilizing the thin polymer films.However,at T_(aging2)<T_(g),the process of physical aging slightly influences the stability of the thin polymer films.The formation of the adsorbed layer at Taging2 can reduce the short-range polar interaction of the thin film system and cannot suppress the instability of thin polymer films in the solvent-induced process.These results provide further insight into the stable mechanism of thin polymer films in the solvent-induced process.
基金supported by the Science Challenge Project(No.TZ2018004)the National Natural Science Foundation of China(Nos.21790340 and 21674113)+2 种基金Jilin Scientific and Technological Development Program(No.20180519001JH)the Programs of Chinese Academy of Sciences(Nos.QYZDY SSW-SLH027 and YJKYYQ20190084)Y.L.acknowledges the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2016204)for financial support.
文摘A mesoscopic simulation is applied to investigate the effects of hydrodynamic interactions and axial chains on the dynamics of threaded rings.The hydrodynamic interactions significantly speed up the diffusion and relaxation of both free and threaded rings.The decoupled diffusion and relaxation dynamics indicate the broken of the Einstein-Stokes relationship.The diffusion of a ring threaded on a flexible chain exhibits a synergism effect compared to that on an axial rod,which originates from the self-diffusion of the ring and the reptation-like motion of the axial chain.Meanwhile,hydrodynamic interactions significantly improve the synergism effect,leading to an enhanced sliding motion of the threaded ring.The faster sliding of threaded rings suggests that the entropic barrier is negligible,which agrees well with the basic assumption of barrier-less confining tube at equilibrium in tube theory.Our results provide a new perspective on analysis of the effects of topology constraints on polymer dynamics.
基金supported by the National Natural Science Foundation of China (Nos. 20804047, 20774096 and 20734003)Programs and the Fund for Creative Research Groups (No. 50921062)subsidized by the Special Funds for National Basic Research Program of China (Nos. 2009CB930100, 2010CB631100)
文摘The self-assembly of the linear rod-coil multiblock copolymers is studied by applying self-consistent-field lattice techniques in a three-dimensional (3D) space. Compared to the copolymer with one rod, the copolymer with more rods (mrod≥ 2) exhibits rich order-order phase transitions with increasing temperature, where the ordered morphology changes from strips to perforated lamellae and finally to lamellae. In addition, taking the copolymer with mrod = 2 as a representative, we fiarther study the effects of the volume fractions of the rods, the spacer coils and the end coils on the phase behaviors respectively, by which the detailed self-assembled mechanism of the linear rod-coil multiblock copolymers is revealed. Our results are expected to provide guidance for the design of the rod-coil materials.
基金the National Key R&D Program of China (No. 2020YFA0713601)the National Natural Science Foundation of China (Nos. 21790340 and 22073092)the Programs of Chinese Academy of Sciences (No. QYZDYSSW-SLH027)。
文摘The impact of ring polymer length N and the influence of interchain and intrachain interactions on the size and dynamic behaviors of ring polymers,including the structural relaxation time τ_(R) and self-diffusion coefficient D,remain poorly understood at present due to a lack of systematic studies with relatively large N values.This work addressed this issue by applying dynamic Monte Carlo simulations with independently tuned interchain and intrachain interactions to investigate the size and dynamics of the ring melts with chain lengths over a wide range of 0.2N_(e)≤N≤80N_(e)(N_(e) is the entanglement length of corresponding linear chains)under different topological constraints,including all-crossing and intercrossing systems.We found that it was inappropriate to treat the unknotting constraint free energy of the ring chains in the melts as the free energy contributed by the excluded volume interactions of polymers in a good solvent.Scaling exponents of 2.5 and 1.5 reflecting the Ndependence of τ_(R) were obtained for long ring chains in non-crossing and intra-crossing systems,respectively,suggesting that the ring chains behaved as individual clusters and exhibited Zimm-like dynamics in intra-crossing systems.A single scaling exponent of-2 reflecting the Ndependence of D was obtained for ring chains in non-crossing and intra-crossing systems,indicating that the intrachain constraints affected only the value of D,and had little influence on the scaling relationship between D and N.Furthermore,the extended Stokes-Einstein relation broke down for the ring chains in the non-crossing and intra-crossing systems because the structural relaxation and translational diffusion were decoupled for the short ring systems,while both the translational diffusion and rotational relaxations,as well as diffusion at short and long time scales,were decoupled for long ring systems.
基金financially supported by the National Natural Science Foundation of China (Nos. 21873092, 21774127,21790341, 21790342)the Key Research Program of Frontier Sciences+1 种基金CAS (No. QYZDY-SSW-SLH027)the Jilin Provincial science and technology development program (No.20190103115JH)。
文摘We adopt Langevin dynamics to explore the stress-structure relationship of telechelic reversible associating polymer gel during startup shear flow, with shear strengths varying from Wi=12.6 to Wi=12640. At weak shear flow Wi=12.6, the shear stress proportionally increases with shear strain at short times, followed by a strain hardening behavior and then passes through a maximum(σmax, γmax) and finally decreases until it reaches the steady state. During the evolution of stress, the gel network is only slightly broken and essentially maintains its framework, and the strain hardening behavior originates from the excessive stretching of chains. On the other hand, the stress-strain curve at intermediate shear flow Wi=505.6 shows two differences from that at Wi=12.6, namely, the absence of strain hardening and a dramatic increase of stress at large strains,which is caused by the rupture of gel network at small strains and the network recovery at large strains, respectively. Finally, at very strong shear flow Wi=6319.7, the gel network is immediately broken by shear flow and the stress-strain curve exhibits similar behaviors to those of classical polymeric liquids.
基金supported by the National Natural Science Foundation of China for General (Nos. 50303017,50373044),Major (Nos. 20490220, 50390090)the Special Funds for Major State Basic Research Projects(No. 2003CB615600)
文摘The melting and crystallization behaviors of poly(e-caprolactone) (PCL) ultra-thin films with thickness from 15 ran to 8 nm were studied by AFM technique equipped with a hot-stage in real-time. It was found that melting can erase the spherulitic structure for polymer film with high thickness. However, annealing above the melting point can not completely erase the tree-like structure for the thinner polymer film. Generally, the structure formation of thin polymer films of PCL is controlled not only by melting and crystallization but also by dewetting during thermal annealing procedures, and dewetting predominates in the structure formation of ultra-thin films. However, the presence of tree-like morphology at 75 ℃ may be due to the strong interaction between PCL and mica surface, which may stick the PCL chains onto the mica surface during thermal annealing process. Moreover, the growth of the dendrites was investigated and it was found that crystallization is followed from a dewetted sample, and the branches did not grow with the stems. The crystallization of polymer in the ultra- thin films is a diffusion-controlled process. Both melting and crystallization behaviors of PCL in thin films are influenced by film thickness.
基金supported by the National Natural Science Foundation of China (Nos. 20974077, 51173130)Synchrotron experiments at Beam line A2 were supported by HASYLAB project (I-20110306, II20090111)
文摘The real time and in situ investigation of the crystallization process and structure transitions of asymmetric crystalline-crystalline diblock copolymers from the melt was performed with synchrotron simultaneous SAXS/WAXS. The asymmetric poly(ethylene oxide)-b-poly(ε-caprolactone) diblock copolymers were chosen for the present study. It was shown that the short blocks crystallized later than the long blocks and final lamellar structure was formed in all of the asymmetric diblock copolymers. The final lamellar structure was confirmed by AFM observation. The SAXS data were analyzed with different methods for the early stage of the crystallization. The Guinier plots indicated that there were no isolated domains formed before the formation of lamellae in the asymmetric diblock copolymers during the crystallization process. Debye- Bueche plots implied the formation of correlated domains during crystallization.
基金supported by the National Natural Science Foundation of China (No. 21274153)
文摘The tumbling dynamics of individual absorbed polymer chains in shear flow is studied by employing multi-particle collision dynamics simulation techniques combined with molecular dynamics simulations.We find that the dependence of tumbling frequencies on shear rate is independent of both adsorption strength and surface corrugate.