期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Development of a concentration-controlled sequential nanoprecipitation for making lipid nanoparticles with high drug loading 被引量:1
1
作者 letao xu Xing Wang +5 位作者 Guangze Yang Zihan Zhao Yilun Weng Yang Li Yun Liu Chun-Xia Zhao 《Aggregate》 EI CAS 2023年第6期71-84,共14页
Lipid-based nanostructures have garnered considerable interests over the last two decades,and have achieved tremendous clinical success including thefirst clinical approval of a liposome(Doxil)for cancer therapy in 199... Lipid-based nanostructures have garnered considerable interests over the last two decades,and have achieved tremendous clinical success including thefirst clinical approval of a liposome(Doxil)for cancer therapy in 1995 and the recent COVID-19 mRNA lipid nanoparticle vaccines.Compared to liposomes which have a lipid bilayer surrounding an aqueous core,lipid nanoparticles with a particle structure have several attractive advantages for encapsulating poorly water-soluble drugs such as better stability due to the particle structure,high drug encapsulation efficiency because of a pre-or co-drug-loading strategy.While many studies have reported the synthesis of lipid nanoparticles for hydrophobic drug encapsulation,the pre-cise control of drug loading and encapsulation efficiency remains a significant challenge.This work reports a new concentration-controlled nanoprecipitation plat-form technology for fabricating lipid nanoparticles with tunable drug loading up to 70 wt%.This method is applicable for encapsulating a wide range of drugs from very hydrophobic to slightly hydrophilic.Using this facile method,nanoparticles with tunable drug loading exhibited excellent properties such as small particle size,narrow size distribution,good particle stability,showing great promise for future drug delivery applications. 展开更多
关键词 controlled release drug delivery drug loading lipid nanoparticles NANOPRECIPITATION
原文传递
Phase separation-induced nanoprecipitation for making polymer nanoparticles with high drug loading Special Collection:Distinguished Australian Researchers 被引量:1
2
作者 Guangze Yang Yun Liu +6 位作者 Song Jin Yue Hui Xing Wang letao xu Dong Chen David Weitz Chun-Xia Zhao 《Aggregate》 2023年第2期137-145,共9页
Increasing drug loading remains a critical challenge in the development and translation of nanomedicine.High drug-loading nanoparticles have demonstrated unique advantages such as less carrier material used,better-con... Increasing drug loading remains a critical challenge in the development and translation of nanomedicine.High drug-loading nanoparticles have demonstrated unique advantages such as less carrier material used,better-controlled drug release,and improved efficacy and safety.Herein,we report a simple and efficient salt concentration screening method for making polymer nanoparticles with exceptionally high drug loading(up to 66.5 wt%)based on phase separation-induced nanoprecipitation.Upon addition of salt,phase separation occurs in a miscible solvent-water solution delaying the precipitation time of drugs and polymers to different extents,facilitating their co-precipitation thus the formation of high drug-loading nanoparticles with high encapsulation efficiency(>90%)and excellent stability(>1 month).This technology is versatile and easy to be adapted to various hydrophobic drugs,different polymers,and solvents.This salt-induced nanoprecipitation strategy offers a novel approach to fabricating polymer nanoparticles with tunable drug loading,and opens great potentials for future nanomedicines. 展开更多
关键词 drug loading liquid-liquid phase separation nanoparticles NANOPRECIPITATION SALT
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部