The study focuses on the imputation for the longitudinal survey data which often has nonignorable nonrespondents. Local linear regression is used to impute the missing values and then the estimation of the time-depend...The study focuses on the imputation for the longitudinal survey data which often has nonignorable nonrespondents. Local linear regression is used to impute the missing values and then the estimation of the time-dependent finite populations means. The asymptotic properties (unbiasedness and consistency) of the proposed estimator are investigated. Comparisons between different parametric and nonparametric estimators are performed based on the bootstrap standard deviation, mean square error and percentage relative bias. A simulation study is carried out to determine the best performing estimator of the time-dependent finite population means. The simulation results show that local linear regression estimator yields good properties.展开更多
In this paper, we have proposed a class of ratio-cum-product estimator for estimating population mean of study variable for single phase sampling using multi-auxiliary attributes. The expressions for mean square error...In this paper, we have proposed a class of ratio-cum-product estimator for estimating population mean of study variable for single phase sampling using multi-auxiliary attributes. The expressions for mean square error are derived. An empirical study is given to compare the performance of the estimator with existing estimators. It has been found that the ratio-cum-product estimator using multiple auxiliary attributes is more efficient than mean per unit, product and ratio estimators using one auxiliary attribute, and Product and Ratio estimators using multiple auxiliary attributes in single phase sampling.展开更多
Exponentiated Generalized Weibull distribution is a probability distribution which generalizes the Weibull distribution introducing two more shapes parameters to best adjust the non-monotonic shape. The parameters of ...Exponentiated Generalized Weibull distribution is a probability distribution which generalizes the Weibull distribution introducing two more shapes parameters to best adjust the non-monotonic shape. The parameters of the new probability distribution function are estimated by the maximum likelihood method under progressive type II censored data via expectation maximization algorithm.展开更多
In this paper, we have proposed an estimator of finite population mean using a new regression type estimator with two auxiliary variables for single-phase sampling and investigated its finite sample properties. An emp...In this paper, we have proposed an estimator of finite population mean using a new regression type estimator with two auxiliary variables for single-phase sampling and investigated its finite sample properties. An empirical study has been carried out to compare the performance of the proposed estimator with the existing estimators that utilize auxiliary variables for finite population mean. It has been found that the new regression type estimator with two auxiliary variables for to be more efficient than mean per unit, ratio and product estimator and exponential ratio and exponential product estimators and exponential ratio-product estimator.展开更多
In this paper, we have developed estimators of finite population mean using Mixture Regression estimators using multi-auxiliary variables and attributes in two-phase sampling and investigated its finite sample propert...In this paper, we have developed estimators of finite population mean using Mixture Regression estimators using multi-auxiliary variables and attributes in two-phase sampling and investigated its finite sample properties in full, partial and no information cases. An empirical study using natural data is given to compare the performance of the proposed estimators with the existing estimators that utilizes either auxiliary variables or attributes or both for finite population mean. The Mixture Regression estimators in full information case using multiple auxiliary variables and attributes are more efficient than mean per unit, Regression estimator using one auxiliary variable or attribute, Regression estimator using multiple auxiliary variable or attributes and Mixture Regression estimators in both partial and no information case in two-phase sampling. A Mixture Regression estimator in partial information case is more efficient than Mixture Regression estimators in no information case.展开更多
In this paper, we have proposed three classes of ratio-cum-product estimators for estimating population mean of study variable for two-phase sampling using multi-auxiliary attributes for full information, partial info...In this paper, we have proposed three classes of ratio-cum-product estimators for estimating population mean of study variable for two-phase sampling using multi-auxiliary attributes for full information, partial information and no information cases. The expressions for mean square errors are derived. An empirical study is given to compare the performance of the estimator with the existing estimator that utilizes auxiliary attribute or multiple auxiliary attributes. The ratio-cum-product estimator in two-phase sampling for full information case has been found to be more efficient than existing estimators and also ratio-cum-product estimator in two-phase sampling for both partial and no information case. Finally, ratio-cum-product estimator in two-phase sampling for partial information case has been found to be more efficient than ratio-cum-product estimator in two-phase sampling for no information case.展开更多
Penalized spline has largely been applied in many research studies not limited to disease modeling and epidemiology. However, due to spatial heterogeneity of the data because different smoothing parameter leads to dif...Penalized spline has largely been applied in many research studies not limited to disease modeling and epidemiology. However, due to spatial heterogeneity of the data because different smoothing parameter leads to different amount of smoothing in different regions the penalized spline has not been exclusively appropriate to fit the data. The study assessed the properties of penalized spline hierarchical model;the hierarchy penalty improves the fit as well as the accuracy of inference. The simulation demonstrates the potential benefits of using the hierarchical penalty, which is obtained by modelling the global smoothing parameter as another spline. The results showed that mixed model with penalized hierarchical penalty had a better fit than the mixed model without hierarchy this was demonstrated by the rapid convergence of the model posterior parameters and the smallest DIC value of the model. Therefore hierarchical model with fifteen sub-knots provides a better fit of the data.展开更多
文摘The study focuses on the imputation for the longitudinal survey data which often has nonignorable nonrespondents. Local linear regression is used to impute the missing values and then the estimation of the time-dependent finite populations means. The asymptotic properties (unbiasedness and consistency) of the proposed estimator are investigated. Comparisons between different parametric and nonparametric estimators are performed based on the bootstrap standard deviation, mean square error and percentage relative bias. A simulation study is carried out to determine the best performing estimator of the time-dependent finite population means. The simulation results show that local linear regression estimator yields good properties.
文摘In this paper, we have proposed a class of ratio-cum-product estimator for estimating population mean of study variable for single phase sampling using multi-auxiliary attributes. The expressions for mean square error are derived. An empirical study is given to compare the performance of the estimator with existing estimators. It has been found that the ratio-cum-product estimator using multiple auxiliary attributes is more efficient than mean per unit, product and ratio estimators using one auxiliary attribute, and Product and Ratio estimators using multiple auxiliary attributes in single phase sampling.
文摘Exponentiated Generalized Weibull distribution is a probability distribution which generalizes the Weibull distribution introducing two more shapes parameters to best adjust the non-monotonic shape. The parameters of the new probability distribution function are estimated by the maximum likelihood method under progressive type II censored data via expectation maximization algorithm.
文摘In this paper, we have proposed an estimator of finite population mean using a new regression type estimator with two auxiliary variables for single-phase sampling and investigated its finite sample properties. An empirical study has been carried out to compare the performance of the proposed estimator with the existing estimators that utilize auxiliary variables for finite population mean. It has been found that the new regression type estimator with two auxiliary variables for to be more efficient than mean per unit, ratio and product estimator and exponential ratio and exponential product estimators and exponential ratio-product estimator.
文摘In this paper, we have developed estimators of finite population mean using Mixture Regression estimators using multi-auxiliary variables and attributes in two-phase sampling and investigated its finite sample properties in full, partial and no information cases. An empirical study using natural data is given to compare the performance of the proposed estimators with the existing estimators that utilizes either auxiliary variables or attributes or both for finite population mean. The Mixture Regression estimators in full information case using multiple auxiliary variables and attributes are more efficient than mean per unit, Regression estimator using one auxiliary variable or attribute, Regression estimator using multiple auxiliary variable or attributes and Mixture Regression estimators in both partial and no information case in two-phase sampling. A Mixture Regression estimator in partial information case is more efficient than Mixture Regression estimators in no information case.
文摘In this paper, we have proposed three classes of ratio-cum-product estimators for estimating population mean of study variable for two-phase sampling using multi-auxiliary attributes for full information, partial information and no information cases. The expressions for mean square errors are derived. An empirical study is given to compare the performance of the estimator with the existing estimator that utilizes auxiliary attribute or multiple auxiliary attributes. The ratio-cum-product estimator in two-phase sampling for full information case has been found to be more efficient than existing estimators and also ratio-cum-product estimator in two-phase sampling for both partial and no information case. Finally, ratio-cum-product estimator in two-phase sampling for partial information case has been found to be more efficient than ratio-cum-product estimator in two-phase sampling for no information case.
文摘Penalized spline has largely been applied in many research studies not limited to disease modeling and epidemiology. However, due to spatial heterogeneity of the data because different smoothing parameter leads to different amount of smoothing in different regions the penalized spline has not been exclusively appropriate to fit the data. The study assessed the properties of penalized spline hierarchical model;the hierarchy penalty improves the fit as well as the accuracy of inference. The simulation demonstrates the potential benefits of using the hierarchical penalty, which is obtained by modelling the global smoothing parameter as another spline. The results showed that mixed model with penalized hierarchical penalty had a better fit than the mixed model without hierarchy this was demonstrated by the rapid convergence of the model posterior parameters and the smallest DIC value of the model. Therefore hierarchical model with fifteen sub-knots provides a better fit of the data.