An Al−3.6Cu−1Li alloy was subjected to room temperature rolling and cryorolling to investigate their effects on microstructure evolution and mechanical properties.The microstructure and aging characteristics of the ro...An Al−3.6Cu−1Li alloy was subjected to room temperature rolling and cryorolling to investigate their effects on microstructure evolution and mechanical properties.The microstructure and aging characteristics of the room temperature-rolled and the cryorolled alloys with 70%and 90%of thickness reductions were studied by microstructure analysis and mechanical tests.The samples subjected to cryorolling with 90%of thickness reduction have high strength and good toughness.This is mainly due to the inhibition of dynamic recovery and the accumulation of high-density dislocations in cryorolled samples.In addition,the artificial aging reveals that the temperature at which peak hardness is attained is inversely proportional to the deformation amount and directly proportional to the rolling temperature.Moreover,bright field images of cryorolled samples after aging indicate the existence of T1(Al2CuLi)precipitates.This suggests that the high stored strain energy enhances the aging kinetics of the alloy,which further promotes the nucleation of T1 phases.展开更多
High-entropy alloy particles(HEAPs)can markedly enhance the mechanical properties of metal matrix composites(MMCs).In this study,AA5083/Al_(0.5) CoCrFeNi HEAPs MMCs with diff erent HEAPs contents(0,1,and 3 wt%)were pr...High-entropy alloy particles(HEAPs)can markedly enhance the mechanical properties of metal matrix composites(MMCs).In this study,AA5083/Al_(0.5) CoCrFeNi HEAPs MMCs with diff erent HEAPs contents(0,1,and 3 wt%)were prepared via a stir-casting,and then these MMCs sheets were hot rolled(573 K)and cryorolled(77 K),respectively.The mechanical properties of the MMCs sheets were measured by tensile testing and microhardness test.Additionally,their microstructures were analyzed by scanning electron microscopy and transmission electron microscopy.Results revealed that the ultimate tensile strength(UTS)of the as-cast AA5083/Al_(0.5) CoC rF eN i HEAPs MMCs were improved from 203 to 257 MPa by adding 3 wt%HEAPs.And the mechanical properties of the MMCs sheets were improved after cryorolling.After cryorolling with 50%rolling reduction ratio,the MMCs with 1 wt%HEAPs had an UTS of 382 MPa,which was 1.9 times that of the MMCs before rolling.Finally,the strengthening mechanisms of HEAPs and cryorolling on the AA5083/HEAPs MMCs were discussed.展开更多
基金Project(2019YFB2006500)supported by the National Key Research and Development Program of ChinaProject(51674303)supported by the National Natural Science Foundation of China+2 种基金Project(2018RS3015)supported by the Huxiang High-Level Talent Gathering Project of Hunan Province,ChinaProject(2019CX006)supported by the Innovation Driven Program of Central South University,ChinaProject supported by the Research Fund of the Key Laboratory of High Performance Complex Manufacturing at Central South University,China。
文摘An Al−3.6Cu−1Li alloy was subjected to room temperature rolling and cryorolling to investigate their effects on microstructure evolution and mechanical properties.The microstructure and aging characteristics of the room temperature-rolled and the cryorolled alloys with 70%and 90%of thickness reductions were studied by microstructure analysis and mechanical tests.The samples subjected to cryorolling with 90%of thickness reduction have high strength and good toughness.This is mainly due to the inhibition of dynamic recovery and the accumulation of high-density dislocations in cryorolled samples.In addition,the artificial aging reveals that the temperature at which peak hardness is attained is inversely proportional to the deformation amount and directly proportional to the rolling temperature.Moreover,bright field images of cryorolled samples after aging indicate the existence of T1(Al2CuLi)precipitates.This suggests that the high stored strain energy enhances the aging kinetics of the alloy,which further promotes the nucleation of T1 phases.
基金financially supported by the National Key Research and Development Program(Grant No.2019YFB2006500)the Huxiang High-Level Talent Gathering Project of HUNAN Province(Grant No.2018RS3015)+4 种基金Innovation Driven Program of Central South University(Grant No.2019CX006)the Science and Technology Innovation Program of Hunan Province(Grant No.2020RC2002)the Natural Science Foundation of Hunan Province(Grant No.2021JJ40774)the Fundamental Research Funds for the Central Universities of Central South University(Grant No.2021zzts0150)the Research Fund of the Key Laboratory of High Performance Complex Manufacturing at Central South University。
文摘High-entropy alloy particles(HEAPs)can markedly enhance the mechanical properties of metal matrix composites(MMCs).In this study,AA5083/Al_(0.5) CoCrFeNi HEAPs MMCs with diff erent HEAPs contents(0,1,and 3 wt%)were prepared via a stir-casting,and then these MMCs sheets were hot rolled(573 K)and cryorolled(77 K),respectively.The mechanical properties of the MMCs sheets were measured by tensile testing and microhardness test.Additionally,their microstructures were analyzed by scanning electron microscopy and transmission electron microscopy.Results revealed that the ultimate tensile strength(UTS)of the as-cast AA5083/Al_(0.5) CoC rF eN i HEAPs MMCs were improved from 203 to 257 MPa by adding 3 wt%HEAPs.And the mechanical properties of the MMCs sheets were improved after cryorolling.After cryorolling with 50%rolling reduction ratio,the MMCs with 1 wt%HEAPs had an UTS of 382 MPa,which was 1.9 times that of the MMCs before rolling.Finally,the strengthening mechanisms of HEAPs and cryorolling on the AA5083/HEAPs MMCs were discussed.