期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Neighborhood garden's age shapes phyllosphere microbiota associated with respiratory diseases in cold seasons
1
作者 Chang Zhao Xinxin Liu +6 位作者 Haoxin Tan Shan Yin lantian su Baoming Du Muhammad Khalid Aki Sinkkonen Nan Hui 《Environmental Science and Ecotechnology》 SCIE 2024年第2期114-123,共10页
Neighborhood gardens serve as sensitive sites for human microbial encounters,with phyllosphere microbes directly impacting our respiratory health.Yet,our understanding remains limited on how factors like season,garden... Neighborhood gardens serve as sensitive sites for human microbial encounters,with phyllosphere microbes directly impacting our respiratory health.Yet,our understanding remains limited on how factors like season,garden age,and land use shape the risk of respiratory diseases(RDs)tied to these garden microbes.Here we examined the microbial communities within the phyllosphere of 72 neighborhood gardens across Shanghai,spanning different seasons(warm and cold),garden ages(old and young),and locales(urban and rural).We found a reduced microbial diversity during the cold season,except for Gammaproteobacteria which exhibited an inverse trend.While land use influenced the microbial composition,urban and rural gardens had strikingly similar microbial profiles.Alarmingly,young gardens in the cold season hosted a substantial proportion of RDs-associated species,pointing towards increased respiratory inflammation risks.In essence,while newer gardens during colder periods show a decline in microbial diversity,they have an increased presence of RDs-associated microbes,potentially escalating respiratory disease prevalence.This underscores the pivotal role the garden age plays in enhancing both urban microbial diversity and respiratory health. 展开更多
关键词 Neighborhood gardens Phyllosphere microbial communities Seasonal variation Garden age Respiratory diseases
原文传递
Mutualistic fungus Piriformospora indica modulates cadmium phytoremediation properties of host plant via concerted action of enzymatic and non-enzymatic biochemicals
2
作者 Muhammad KHALID Saeed UR-RAHMAN +3 位作者 Haoxin TAN lantian su Pei ZHOU Nan HUI 《Pedosphere》 SCIE CAS CSCD 2022年第2期256-267,共12页
Soils and ecosystems contaminated with cadmium (Cd) threaten human health and adversely affect morphological,physiological,and biochemical parameters of plants.The symbiotic association of endophytic fungi with their ... Soils and ecosystems contaminated with cadmium (Cd) threaten human health and adversely affect morphological,physiological,and biochemical parameters of plants.The symbiotic association of endophytic fungi with their host plants is the best strategy to improve various plant characteristics and remediate soils polluted with heavy metal(loid)s (HMs).Being a well-known plant growth-promoting fungus,Piriformospora indica confers resistance against a number of abiotic stresses,including HM stress.This pot experiment explored the potential and ameliorative effects of P.indica on Artemisia annua L.plants treated with different concentrations (0,40,80,and 120 mg kg-1) of Cd.Inoculation with P.indica significantly increased plant performance,especially by enhancing chlorophyll concentration and water potential and by decreasing electrolytic leakage,when compared with un-inoculated plants,despite the high Cd levels.Similarly,P.indica enhanced antioxidant enzyme activities,thereby reducing the drastic effects of Cd in inoculated plants.In addition,P.indica accumulated Cd in the roots of colonized plants,as revealed by atomic absorption spectroscopy,and restricted Cd translocation to aerial parts.Furthermore,P.indica showed in vitro resistance (up to a certain level) to Cd stress;however,fungus growth was inhibited at very high Cd concentrations,proving it an excellent candidate for use as a potential phytoremediator in fields affected by Cd contamination.The transcriptional analysis showed that the signaling genes and artemisinin and flavonoid biosynthetic pathway genes were significantly upregulated in P.indica-co-cultivated plants when compared with un-inoculated plants,suggesting a fine collaboration between primary and secondary metabolisms to modulate resistance capacity and to enhance the phytoremediation capability of A.annua against Cd toxicity. 展开更多
关键词 Artemisia annua defence-related gene endophytic fungi fungal inoculation heavy metal stress plant growth promotion soil contamination TRANSCRIPTS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部