期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Assessment of the Southern Ocean Sea Surface Temperature Biases in CMIP5 and CMIP6 Models
1
作者 GAO Zhen ZHAO Shichang +2 位作者 LIU Qinyu long shang-min SUN Shantong 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第5期1135-1150,共16页
This work evaluates the performances of climate models in simulating the Southern Ocean(SO)sea surface temperature(SST)by a large ensemble from phases 5 and 6 of the Coupled Model Intercomparison Project(CMIP5 and CMI... This work evaluates the performances of climate models in simulating the Southern Ocean(SO)sea surface temperature(SST)by a large ensemble from phases 5 and 6 of the Coupled Model Intercomparison Project(CMIP5 and CMIP6).By combining models from the same community sharing highly similar SO SST biases and eliminating the effect of global-mean biases on local SST biases,the results reveal that the ensemble-mean SO SST bias at 70°-30°S decreases from 0.38℃ in CMIP5 to 0.28℃ in CMIP6,together with increased intermodel consistency.The dominant mode of the intermodel variations in the zonal-mean SST biases is characterized as a meridional uniform warm bias pattern,explaining 79.1% of the intermodel variance and exhibiting positive principal values for most models.The ocean mixed layer heat budget further demonstrates that the SST biases at 70°-50°S primarily result from the excessive summertime heating effect from surface net heat flux.The biases in surface net heat flux south of 50°S are largely impacted by surface shortwave radiation from cloud and clear sky components at different latitudes.North of 50°S,the underestimated westerlies reduce the northward Ekman transport and hence northward cold advection in models,leading to warm SST biases year-round.In addition,the westerly biases are primarily traced back to the atmosphere-alone model simulations forced by the observed SST and sea ice.These results disclose the thermal origin at the high latitude and dynamical origin at the low latitude of the SO SST biases and underscore the significance of the deficiencies of atmospheric models in producing the SO SST biases. 展开更多
关键词 Southern Ocean CMIP5 CMIP6 SST biases surface heat flux WESTERLIES atmospheric biases cloud simulation
在线阅读 下载PDF
Optimal heat source for the interannual variability of the western North Pacific summer monsoon
2
作者 HU Kaiming long shang-min 《Atmospheric and Oceanic Science Letters》 CSCD 2020年第1期41-47,共7页
Using 132-member experiments based on a linear baroclinic atmospheric model(LBM), this study investigates the optimal heat source forcing the interannual variability of the western North Pacific summer monsoon(WNPSM).... Using 132-member experiments based on a linear baroclinic atmospheric model(LBM), this study investigates the optimal heat source forcing the interannual variability of the western North Pacific summer monsoon(WNPSM). The 132 members are forced by localized atmospheric heat sources distributed homogeneously over regions from 55°S to 55°N, each 10° latitude × 30° longitude in size. The atmospheric responses to all the heating constitute an ensemble to examine the relative contribution of each local heat source to the strength of the WNPSM. The result indicates that the combination of an atmospheric heating(cooling) source over the subtropical Northwest Pacific and a cooling(heating) source over the tropical Indian Ocean and the midlatitudes from China to the southern part of Japan is the pattern most effective at enhancing(weakening) the WNPSM.Besides, the optimal heat source pattern identified by the LBM simulations is similar to the observed atmospheric heating anomalies associated with WNPSM interannual variability. The results suggest that any external forcing that leads to a similar heating structure as the optimal thermal forcing pattern could lead to an anomalous WNPSM. 展开更多
关键词 Western North Pacific summer monsoon heat source linear baroclinic model
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部