Rice seedling blight,caused by various fungi,including Fusarium oxysporum,poses a severe threat to rice production.As awareness grows regarding the environmental and safety hazards associated with the application of f...Rice seedling blight,caused by various fungi,including Fusarium oxysporum,poses a severe threat to rice production.As awareness grows regarding the environmental and safety hazards associated with the application of fungicides for managing rice seedling blight,there has been a shift in focus towards biological control agents.In this study,we isolated biocontrol bacteria from paddy fields that significantly inhibited the growth of F.oxysporum in vitro and identified the strains as Bacillus amyloliquefaciens T40 and Bacillus pumilus T208.Additionally,our findings indicated that the combined application of these Bacillus strains in soil was more effective in reducing the incidence of rice seedling blight than their individual use.Analysis of 16S and internal transcribed spacer rRNA gene sequencing data revealed that the mixture of the T40 and T208 strains exhibited the lowest average clustering coefficients,which were negatively correlated with the biomass of F.oxysporum-inoculated rice seedlings.Furthermore,this mixture led to higher stochastic assembly(average|βNTI|<2)and reduced selection pressures on rice rhizosphere bacteria compared with individual strain applications.The mixture of the T40 and T208 strains also significantly increased the expression of defense-related genes.In conclusion,the mixture of the T40 and T208 strains effectively modulates microbial community structures,enhances microbial network stability,and boosts the resistance against rice seedling blight.Our study supports the development and utilization of biological resources for crop protection.展开更多
The rice false smut disease, caused by Ustilaginoidea virens, has emerged as a significantglobal threat to rice production. The mechanism of carbon catabolite repression plays a crucial role in theefficient utilizatio...The rice false smut disease, caused by Ustilaginoidea virens, has emerged as a significantglobal threat to rice production. The mechanism of carbon catabolite repression plays a crucial role in theefficient utilization of carbon nutrients and enzyme regulation in the presence of complex nutritionalconditions. Although significant progress has been made in understanding carbon catabolite repression infungi such as Aspergillus nidulans and Magnaporthe oryzae, its role in U. virens remains unclear. Toaddress this knowledge gap, we identified UvCreA, a pivotal component of carbon catabolite repression,in U. virens. Our investigation revealed that UvCreA localized to the nucleus. Deletion of UvCreA resultedin decreased growth and pathogenicity in U. virens. Through RNA-seq analysis, it was found that theknockout of UvCreA led to the up-regulation of 514 genes and down-regulation of 640 genes. Moreover,UvCreA was found to be involved in the transcriptional regulation of pathogenic genes and genesassociated with carbon metabolism in U. virens. In summary, our findings indicated that UvCreA isimportant in fungal development, virulence, and the utilization of carbon sources through transcriptionalregulation, thus making it a critical element of carbon catabolite repression.展开更多
基金supported by the Zhejiang Provincial Natural Science Foundation,China(Grant No.LQ24C010007)Zhejiang Science and Technology Major Program on Rice New Variety Breeding,China(Grant No.2021C02063)+4 种基金the Agricultural Sciences and Technologies Innovation Program,China(Grant No.CAAS-CSCB-202301)the Key Projects of Zhejiang Provincial Natural Science Foundation,China(Grant No.LZ23C130002)the Youth Innovation Program of Chinese Academy of Agricultural Sciences(Grant No.Y2023QC22)the Joint Open Competitive Project of the Yazhou Bay Seed Laboratory and China National Seed Company Limited(Grant Nos.B23YQ1514 and B23CQ15EP)the External Cooperation Projects of Biotechnology Research Institute,Fujian Academy of Agricultural Sciences,China(Grant No.DWHZ2024-07).
文摘Rice seedling blight,caused by various fungi,including Fusarium oxysporum,poses a severe threat to rice production.As awareness grows regarding the environmental and safety hazards associated with the application of fungicides for managing rice seedling blight,there has been a shift in focus towards biological control agents.In this study,we isolated biocontrol bacteria from paddy fields that significantly inhibited the growth of F.oxysporum in vitro and identified the strains as Bacillus amyloliquefaciens T40 and Bacillus pumilus T208.Additionally,our findings indicated that the combined application of these Bacillus strains in soil was more effective in reducing the incidence of rice seedling blight than their individual use.Analysis of 16S and internal transcribed spacer rRNA gene sequencing data revealed that the mixture of the T40 and T208 strains exhibited the lowest average clustering coefficients,which were negatively correlated with the biomass of F.oxysporum-inoculated rice seedlings.Furthermore,this mixture led to higher stochastic assembly(average|βNTI|<2)and reduced selection pressures on rice rhizosphere bacteria compared with individual strain applications.The mixture of the T40 and T208 strains also significantly increased the expression of defense-related genes.In conclusion,the mixture of the T40 and T208 strains effectively modulates microbial community structures,enhances microbial network stability,and boosts the resistance against rice seedling blight.Our study supports the development and utilization of biological resources for crop protection.
基金the Key Projects of Zhejiang Provincial Natural Science Foundation,China(Grant No.LZ23C130002)the National Natural Science Foundation of China(Grant No.32100161)+3 种基金the Zhejiang Science and Technology Major Program on Rice New Variety Breeding,China(Grant No.2021C02063)the Key R&D Project of China National Rice Research Institute(Grant No.CNRRI-2020-04)the Chinese Academy of Agricultural Sciences under the Agricultural Sciences and Technologies Innovation Program,the Youth innovation Program of Chinese Academy of Agricultural Sciences(Grant No.Y2023QC22)the Joint Open Competitive Project of the Yazhou Bay Seed Laboratory and China National Seed Company Limited(Grant Nos.B23YQ1514 and B23CQ15EP).
文摘The rice false smut disease, caused by Ustilaginoidea virens, has emerged as a significantglobal threat to rice production. The mechanism of carbon catabolite repression plays a crucial role in theefficient utilization of carbon nutrients and enzyme regulation in the presence of complex nutritionalconditions. Although significant progress has been made in understanding carbon catabolite repression infungi such as Aspergillus nidulans and Magnaporthe oryzae, its role in U. virens remains unclear. Toaddress this knowledge gap, we identified UvCreA, a pivotal component of carbon catabolite repression,in U. virens. Our investigation revealed that UvCreA localized to the nucleus. Deletion of UvCreA resultedin decreased growth and pathogenicity in U. virens. Through RNA-seq analysis, it was found that theknockout of UvCreA led to the up-regulation of 514 genes and down-regulation of 640 genes. Moreover,UvCreA was found to be involved in the transcriptional regulation of pathogenic genes and genesassociated with carbon metabolism in U. virens. In summary, our findings indicated that UvCreA isimportant in fungal development, virulence, and the utilization of carbon sources through transcriptionalregulation, thus making it a critical element of carbon catabolite repression.