期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
磁流变液减振器性能试验研究 被引量:2
1
作者 何鹏 陈京会 +2 位作者 徐进 刘凌豪 吴超群 《噪声与振动控制》 CSCD 北大核心 2023年第2期278-284,共7页
针对单一的性能评价指标无法表征磁流变液减振器的整体性能、难以实现减振器工作性能最优化的问题,采用试验测试方式,结合最大输出阻尼力、响应时间、示功曲线饱满程度等多个性能评价指标分析减振器在不同外部激励电流与激振速度下性能... 针对单一的性能评价指标无法表征磁流变液减振器的整体性能、难以实现减振器工作性能最优化的问题,采用试验测试方式,结合最大输出阻尼力、响应时间、示功曲线饱满程度等多个性能评价指标分析减振器在不同外部激励电流与激振速度下性能的变化规律。研究表明:最大输出阻尼力随外部激励电流的增大而增大,且输出阻尼力在活塞运动速度较小时受活塞运动速度的影响较大,在活塞运动速度足够大时受活塞运动速度的影响较小;活塞运动速度的增加会缩短减振器响应时间,阶跃电流的大小对响应时间的影响较小,但减振器的阶跃下降响应时间比阶跃上升响应时间长;在减振器装配过程中常存在的磁流变液灌装不足与体积补偿装置气体压强选择不当的问题会造成示功曲线发生畸变导致减振器的能量耗散性下降。研究结果可为磁流变液减振器的性能优化提供参考依据。 展开更多
关键词 振动与波 磁流变液减振器 试验研究 性能评价指标 示功曲线
在线阅读 下载PDF
A method to generate foggy optical images based on unsupervised depth estimation
2
作者 WANG Xiangjun liu linghao +1 位作者 NI Yubo WANG Lin 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第1期44-52,共9页
For traffic object detection in foggy environment based on convolutional neural network(CNN),data sets in fog-free environment are generally used to train the network directly.As a result,the network cannot learn the ... For traffic object detection in foggy environment based on convolutional neural network(CNN),data sets in fog-free environment are generally used to train the network directly.As a result,the network cannot learn the object characteristics in the foggy environment in the training set,and the detection effect is not good.To improve the traffic object detection in foggy environment,we propose a method of generating foggy images on fog-free images from the perspective of data set construction.First,taking the KITTI objection detection data set as an original fog-free image,we generate the depth image of the original image by using improved Monodepth unsupervised depth estimation method.Then,a geometric prior depth template is constructed to fuse the image entropy taken as weight with the depth image.After that,a foggy image is acquired from the depth image based on the atmospheric scattering model.Finally,we take two typical object-detection frameworks,that is,the two-stage object-detection Fster region-based convolutional neural network(Faster-RCNN)and the one-stage object-detection network YOLOv4,to train the original data set,the foggy data set and the mixed data set,respectively.According to the test results on RESIDE-RTTS data set in the outdoor natural foggy environment,the model under the training on the mixed data set shows the best effect.The mean average precision(mAP)values are increased by 5.6%and by 5.0%under the YOLOv4 model and the Faster-RCNN network,respectively.It is proved that the proposed method can effectively improve object identification ability foggy environment. 展开更多
关键词 traffic object detection foggy images generation unsupervised depth estimation YOLOv4 model Faster region-based convolutional neural network(Faster-RCNN)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部