Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy.To reduce the high cost of energy,a possible try is to util...Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy.To reduce the high cost of energy,a possible try is to utilize the combination of wind and wave energy considering their natural correlation.A combined concept consisting of a semi-submersible wind turbine and four torus-shaped wave energy converters was proposed and numerically studied under normal operating conditions.However,the dynamic behavior of the integrated system under extreme sea conditions has not been studied yet.In the present work,extreme responses of the integrated system under two different survival modes are evaluated.Fully coupled time-domain simulations with consideration of interactions between the semi-submersible wind turbine and the torus-shaped wave energy converters are performed to investigate dynamic responses of the integrated system,including mooring tensions,tower bending moments,end stop forces,and contact forces at the Column-Torus interface.It is found that the addition of four tori will reduce the mean motions of the yaw,pitch and surge.When the tori are locked at the still water line,the whole integrated system is more suitable for the survival modes.展开更多
超大型海上浮式结构物(Very Large Floating Structure, VLFS)是由若干个单模块通过连接器连接而成的海上结构物,连接器是整个结构中最薄弱而又最关键的部分,因此有必要对连接器基座进行静强度分析和极限强度分析。文章采用以包含连接...超大型海上浮式结构物(Very Large Floating Structure, VLFS)是由若干个单模块通过连接器连接而成的海上结构物,连接器是整个结构中最薄弱而又最关键的部分,因此有必要对连接器基座进行静强度分析和极限强度分析。文章采用以包含连接器基座的上箱体为研究对象,选取包含单个连接器基座和两个连接器基座的上箱体局部结构作为模型进行静强度分析,得到了两种模型连接器基座整体Von mises应力不大,但存在基座与连接器连接处、立柱与上箱体底甲板连接处两处明显的高应力区的相关结论。然后,采用非线性有限元准静态法对连接器基座进行极限强度分析,确定结构在危险工况下最先发生破坏的位置,得到基座连接器不同方向的极限承载力。结果表明,连接器基座在各个方向的极限承载力都远大于其载荷预报值,连接器基座具有较大的结构强度储备。文中的研究结果为超大浮体连接器基座的设计和安全可靠性分析提供了相关理论依据。展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52171289,42176210,and 52201330)the Guangdong Basic and Applied Basic Research Foundation,China(Grant No.2022B1515250005)Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.311023014).
文摘Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy.To reduce the high cost of energy,a possible try is to utilize the combination of wind and wave energy considering their natural correlation.A combined concept consisting of a semi-submersible wind turbine and four torus-shaped wave energy converters was proposed and numerically studied under normal operating conditions.However,the dynamic behavior of the integrated system under extreme sea conditions has not been studied yet.In the present work,extreme responses of the integrated system under two different survival modes are evaluated.Fully coupled time-domain simulations with consideration of interactions between the semi-submersible wind turbine and the torus-shaped wave energy converters are performed to investigate dynamic responses of the integrated system,including mooring tensions,tower bending moments,end stop forces,and contact forces at the Column-Torus interface.It is found that the addition of four tori will reduce the mean motions of the yaw,pitch and surge.When the tori are locked at the still water line,the whole integrated system is more suitable for the survival modes.