Nanosized metal (Pt or Pd)-decorated TiO2 nanofibers (NFs) were synthesized by a wet impregnation method. CdSe quantum dots (QDs) were then anchored onto the metal-decorated TiO2 NFs. The photocatalytic performa...Nanosized metal (Pt or Pd)-decorated TiO2 nanofibers (NFs) were synthesized by a wet impregnation method. CdSe quantum dots (QDs) were then anchored onto the metal-decorated TiO2 NFs. The photocatalytic performance of these catalysts was tested for activation and reduction of CO2 under UV-B light. Gas chromatographic analysis indicated the formation of methanol, formic acid, and methyl formate as the primary products. In the absence of CdSe QDs, Pd-decorated TiO2 NFs were found to exhibit enhanced performance compared to Pt-decorated TiO2 NFs for methanol production. However, in the presence of CdSe, Pt-decorated TiO2 NFs exhibited higher selectivity for methanol, typically producing -90 ppmg^-1.h^-1 methanol. The CO2 photoreduction mechanism is proposed to take place via a hydrogenation pathway from first principles calculations, which complement the experimental observations.展开更多
TiO2 nanofibers decorated with Pt and Pd nanoparticles have been synthesized and studied in various photocatalytic processes. Excellent photocatalytic behavior in the decomposition of organic dyes in water, degradatio...TiO2 nanofibers decorated with Pt and Pd nanoparticles have been synthesized and studied in various photocatalytic processes. Excellent photocatalytic behavior in the decomposition of organic dyes in water, degradation of organic stains on the surface of flexible freestanding cellulose/catalyst composite films and in generation of hydrogen from ethanol using both suspended and immobilized catalysts are demonstrated. The performance of the nanofiber-based TiO2 materials is competitive with and in some cases outperforms--their conventional nanoparticle-based counterparts. In all cases, Pd-decorated TiO2 nanoparticles and nanofibers proved to be more efficient than their Pt-based counterparts, which could be explained on the basis of the formation of nano-sized Schottky interfaces at the contacts between TiO2 and metal nanoparticles. The feasibility of forming cellulose/catalyst composites provides a novel way of utilizing photocatalyst materials in large-area coatings and freestanding films.展开更多
In the next generation wireless communication systems operating at near terahertz frequencies, dielectric substrates with the lowest possible permittivity and loss factor are becoming essential. In this work, highly p...In the next generation wireless communication systems operating at near terahertz frequencies, dielectric substrates with the lowest possible permittivity and loss factor are becoming essential. In this work, highly porous (98.9% ± 0.1%) and lightweight silica foams (0.025 ± 0.005 g/cm3), that have extremely low relative permittivity (εr = 1.018 ± 0.003 at 300 GHz) and corresponding loss factor (tan δ< 3 × 10−4 at 300 GHz) are synthetized by a template-assisted sol-gel method. After dip-coating the slabs of foams with a thin film of cellulose nanofibers, sufficiently smooth surfaces are obtained, on which it is convenient to deposit electrically conductive planar thin films of metals important for applications in electronics and telecommunication devices. Here, micropatterns of Ag thin films are sputtered on the substrates through a shadow mask to demonstrate double split-ring resonator metamaterial structures as radio frequency filters operating in the sub-THz band.展开更多
Owing to their higher intrinsic electrical conductivity and chemical stability with respect to their oxide counterparts, nanostructured metal sulfides are expected to revive materials for resistive chemical sensor app...Owing to their higher intrinsic electrical conductivity and chemical stability with respect to their oxide counterparts, nanostructured metal sulfides are expected to revive materials for resistive chemical sensor applications. Herein, we explore the gas sensing behavior of WS2 nanowire-nanoflake hybrid materials and demonstrate their excellent sensitivity (0.043 ppm-1) as well as high selectivity towards H2S relative to CO, NH~, H2, and NO (with corresponding sensitivities of 0.002, 0.0074, 0.0002, and 0.0046 pprn-1, respectively). Gas response measurements, complemented with the results of X-ray photoelectron spectroscopy analysis and first-principles calculations based on density functional theory, suggest that the intrinsic electronic properties of pristine WS2 alone are not sufficient to explain the observed high sensitivity towards H2S. A major role in this behavior is also played by O doping in the S sites of the WS2 lattice. The results of the present study open up new avenues for the use of transition metal disulfide nanomaterials as effective alternatives to metal oxides in future applications for industrial process control, security, and health and environmental safety.展开更多
Metal halide perovskites have emerged as novel and promising photocatalysts for hydrogen generation.Currently,their stability in water is a vital and urgent research question.In this paper a novel approach to stabiliz...Metal halide perovskites have emerged as novel and promising photocatalysts for hydrogen generation.Currently,their stability in water is a vital and urgent research question.In this paper a novel approach to stabilize a bismuth halide perovskite[(CH_(3))_(2)NH_(2)]_(3)[Bil_(6)](DA_(3)Bil_(6))in water using dimethylammonium iodide(DAI)without the assistance of acids or coatings is reported.The DA3Bil6 powder exhibits good stability in DAI solutions for at least two weeks.The concentration of DAI is found as a critical parameter,where the I^(-)ions play the key role in the stabilization.The stability of DA3Bil6 in water is realized via a surface dissolution-recrystallization process.Stabilized DA3Bil6 demonstrates constant photocatalytic properties for visible light-induced photo-oxidation of I^(-)ions and with PtCI4 as a co-catalyst(Pt-DA_(3)Bil_(6)),photocatalytic H2 evolution with a rate of 5.7μmol·h^(-1)from HI in DAI solution,obtaining an apparent quantum efficiency of 0.83%at 535 nm.This study provides new insights on the stabilization of metal halide perovskites for photocatalysis in aqueous solution.展开更多
New strategies for spatially controlled growth of human neurons may provide viable solutions to treat and recover peripheral or spinal cord injuries.While topography cues are known to promote attachment and direct pro...New strategies for spatially controlled growth of human neurons may provide viable solutions to treat and recover peripheral or spinal cord injuries.While topography cues are known to promote attachment and direct proliferation of many cell types,guided outgrowth of human neurites has been found difficult to achieve so far.Here,three-dimensional(3D)micropatterned carbon nanotube(CNT)templates are used to effectively direct human neurite stem cell growth.By exploiting the mechanical flexibility,electrically conductivity and texture of the 3D CNT micropillars,a perfect environment is created to achieve specific guidance of human neurites,which may lead to enhanced therapeutic effects within the injured spinal cord or peripheral nerves.It is found that the 3D CNT micropillars grant excellent anchoring for adjacent neurites to form seamless neuronal networks that can be grown to any arbitrary shape and size.Apart from clear practical relevance in regenerative medicine,these results using the CNT based templates on Si chips also can pave the road for new types of microelectrode arrays to study cell network electrophysiology.展开更多
文摘Nanosized metal (Pt or Pd)-decorated TiO2 nanofibers (NFs) were synthesized by a wet impregnation method. CdSe quantum dots (QDs) were then anchored onto the metal-decorated TiO2 NFs. The photocatalytic performance of these catalysts was tested for activation and reduction of CO2 under UV-B light. Gas chromatographic analysis indicated the formation of methanol, formic acid, and methyl formate as the primary products. In the absence of CdSe QDs, Pd-decorated TiO2 NFs were found to exhibit enhanced performance compared to Pt-decorated TiO2 NFs for methanol production. However, in the presence of CdSe, Pt-decorated TiO2 NFs exhibited higher selectivity for methanol, typically producing -90 ppmg^-1.h^-1 methanol. The CO2 photoreduction mechanism is proposed to take place via a hydrogenation pathway from first principles calculations, which complement the experimental observations.
文摘TiO2 nanofibers decorated with Pt and Pd nanoparticles have been synthesized and studied in various photocatalytic processes. Excellent photocatalytic behavior in the decomposition of organic dyes in water, degradation of organic stains on the surface of flexible freestanding cellulose/catalyst composite films and in generation of hydrogen from ethanol using both suspended and immobilized catalysts are demonstrated. The performance of the nanofiber-based TiO2 materials is competitive with and in some cases outperforms--their conventional nanoparticle-based counterparts. In all cases, Pd-decorated TiO2 nanoparticles and nanofibers proved to be more efficient than their Pt-based counterparts, which could be explained on the basis of the formation of nano-sized Schottky interfaces at the contacts between TiO2 and metal nanoparticles. The feasibility of forming cellulose/catalyst composites provides a novel way of utilizing photocatalyst materials in large-area coatings and freestanding films.
基金The authors thank Kai Metsäkoivu for the technical assistance and Henrikki Liimatainen for providing us with nanocellulose materialsThe financial support received partly from EU Interreg Nord-Lapin liitto(project Transparent,conducting and flexible films for electrodes),Academy of Finland(6Genesis Flagship under Grant 318927)+1 种基金University of Oulu(projects Entity and PoC:Ultra-low permittivity and loss porous nanocomposites for future 6G telecommunication),Hungarian National Research,Development and Innovation Office through the projects GINOP-2.3.2-15-2016-00013 and GINOP-2.3.3-15-2016-00010the Ministry of Human Capacities,Hungary,grant 20391-3/2018/FEKUSTRAT is acknowledged.D.S.is thankful for the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.
文摘In the next generation wireless communication systems operating at near terahertz frequencies, dielectric substrates with the lowest possible permittivity and loss factor are becoming essential. In this work, highly porous (98.9% ± 0.1%) and lightweight silica foams (0.025 ± 0.005 g/cm3), that have extremely low relative permittivity (εr = 1.018 ± 0.003 at 300 GHz) and corresponding loss factor (tan δ< 3 × 10−4 at 300 GHz) are synthetized by a template-assisted sol-gel method. After dip-coating the slabs of foams with a thin film of cellulose nanofibers, sufficiently smooth surfaces are obtained, on which it is convenient to deposit electrically conductive planar thin films of metals important for applications in electronics and telecommunication devices. Here, micropatterns of Ag thin films are sputtered on the substrates through a shadow mask to demonstrate double split-ring resonator metamaterial structures as radio frequency filters operating in the sub-THz band.
文摘Owing to their higher intrinsic electrical conductivity and chemical stability with respect to their oxide counterparts, nanostructured metal sulfides are expected to revive materials for resistive chemical sensor applications. Herein, we explore the gas sensing behavior of WS2 nanowire-nanoflake hybrid materials and demonstrate their excellent sensitivity (0.043 ppm-1) as well as high selectivity towards H2S relative to CO, NH~, H2, and NO (with corresponding sensitivities of 0.002, 0.0074, 0.0002, and 0.0046 pprn-1, respectively). Gas response measurements, complemented with the results of X-ray photoelectron spectroscopy analysis and first-principles calculations based on density functional theory, suggest that the intrinsic electronic properties of pristine WS2 alone are not sufficient to explain the observed high sensitivity towards H2S. A major role in this behavior is also played by O doping in the S sites of the WS2 lattice. The results of the present study open up new avenues for the use of transition metal disulfide nanomaterials as effective alternatives to metal oxides in future applications for industrial process control, security, and health and environmental safety.
基金the Kvantum Institute Em erging Project at the University of Oulu and Academy of Finland ELECTRA-project(No.2430291511).We thank Raija Oilunkaniemi and idarkus Riihimaki for the help with XRD and ATR characterization,respectively.We are grateful to the staff from Centre for Material Analysis(University of Oulu)for the characterization.ELI-ALPS is supported by the European Union and co-flnanced by the European Regional Development Fund(No.GINOP-2.3.6-15-2015-00001).M.U.K.also acknow ledgesfundingfrom PaNOSC Europeanproject.
文摘Metal halide perovskites have emerged as novel and promising photocatalysts for hydrogen generation.Currently,their stability in water is a vital and urgent research question.In this paper a novel approach to stabilize a bismuth halide perovskite[(CH_(3))_(2)NH_(2)]_(3)[Bil_(6)](DA_(3)Bil_(6))in water using dimethylammonium iodide(DAI)without the assistance of acids or coatings is reported.The DA3Bil6 powder exhibits good stability in DAI solutions for at least two weeks.The concentration of DAI is found as a critical parameter,where the I^(-)ions play the key role in the stabilization.The stability of DA3Bil6 in water is realized via a surface dissolution-recrystallization process.Stabilized DA3Bil6 demonstrates constant photocatalytic properties for visible light-induced photo-oxidation of I^(-)ions and with PtCI4 as a co-catalyst(Pt-DA_(3)Bil_(6)),photocatalytic H2 evolution with a rate of 5.7μmol·h^(-1)from HI in DAI solution,obtaining an apparent quantum efficiency of 0.83%at 535 nm.This study provides new insights on the stabilization of metal halide perovskites for photocatalysis in aqueous solution.
基金G.S.L.and L.Y-O.acknowledge the support from the Academy of Finland(Nos.320090,317437 and 286990,respectively)J.T.K.and T.J.acknowledge the support from the Finnish Cultural Foundation Pirkanmaa Regional Fund(No.50151501)+1 种基金the Central Fund(#00150312),respectively.S.N.,T.J.and M.K.acknowledge the support from the Academy of Finland(S.N.and T.J.No.312414 and M.K.No.312409)Business Finland(former Tekes,Human Spare Parts project).This work made use of the electron microscopy and clean-room facilities at the Centre of Microscopy and Nanotechnology,at the University of Oulu.The authors also acknowledge the Tampere Imaging Facility(TIF)and the Tampere CellTech Laboratories for their service.
文摘New strategies for spatially controlled growth of human neurons may provide viable solutions to treat and recover peripheral or spinal cord injuries.While topography cues are known to promote attachment and direct proliferation of many cell types,guided outgrowth of human neurites has been found difficult to achieve so far.Here,three-dimensional(3D)micropatterned carbon nanotube(CNT)templates are used to effectively direct human neurite stem cell growth.By exploiting the mechanical flexibility,electrically conductivity and texture of the 3D CNT micropillars,a perfect environment is created to achieve specific guidance of human neurites,which may lead to enhanced therapeutic effects within the injured spinal cord or peripheral nerves.It is found that the 3D CNT micropillars grant excellent anchoring for adjacent neurites to form seamless neuronal networks that can be grown to any arbitrary shape and size.Apart from clear practical relevance in regenerative medicine,these results using the CNT based templates on Si chips also can pave the road for new types of microelectrode arrays to study cell network electrophysiology.