Drug discovery is a crucial part of human healthcare and has dramatically benefited human lifespan and life quality in recent centuries, however, it is usually time-and effort-consuming. Structural biology has been de...Drug discovery is a crucial part of human healthcare and has dramatically benefited human lifespan and life quality in recent centuries, however, it is usually time-and effort-consuming. Structural biology has been demonstrated as a powerful tool to accelerate drug development. Among different techniques, cryo-electron microscopy(cryo-EM) is emerging as the mainstream of structure determination of biomacromolecules in the past decade and has received increasing attention from the pharmaceutical industry. Although cryo-EM still has limitations in resolution, speed and throughput, a growing number of innovative drugs are being developed with the help of cryo-EM. Here, we aim to provide an overview of how cryo-EM techniques are applied to facilitate drug discovery. The development and typical workflow of cryo-EM technique will be briefly introduced, followed by its specific applications in structure-based drug design, fragment-based drug discovery, proteolysis targeting chimeras, antibody drug development and drug repurposing. Besides cryo-EM, drug discovery innovation usually involves other state-of-the-art techniques such as artificial intelligence(AI), which is increasingly active in diverse areas. The combination of cryo-EM and AI provides an opportunity to minimize limitations of cryo-EM such as automation, throughput and interpretation of mediumresolution maps, and tends to be the new direction of future development of cryo-EM. The rapid development of cryo-EM will make it as an indispensable part of modern drug discovery.展开更多
基金funded by the National Natural Science Foundation of China (NSFC, 31900046, 81972085, 82172465 and 32161133022)the Guangdong Provincial Key Laboratory of Advanced Biomaterials (2022B1212010003)+7 种基金the National Science and Technology Innovation 2030 Major Program (2022ZD0211900)the Shenzhen Key Laboratory of Computer Aided Drug Discovery (ZDSYS20201230165400001)the Chinese Academy of Science President’s International Fellowship Initiative (PIFI)(2020FSB0003)the Guangdong Retired Expert (granted by Guangdong Province)the Shenzhen Pengcheng ScientistNSFC-SNSF Funding (32161133022)Alpha Mol&SIAT Joint LaboratoryShenzhen Government Top-talent Working Funding and Guangdong Province Academician Work Funding。
文摘Drug discovery is a crucial part of human healthcare and has dramatically benefited human lifespan and life quality in recent centuries, however, it is usually time-and effort-consuming. Structural biology has been demonstrated as a powerful tool to accelerate drug development. Among different techniques, cryo-electron microscopy(cryo-EM) is emerging as the mainstream of structure determination of biomacromolecules in the past decade and has received increasing attention from the pharmaceutical industry. Although cryo-EM still has limitations in resolution, speed and throughput, a growing number of innovative drugs are being developed with the help of cryo-EM. Here, we aim to provide an overview of how cryo-EM techniques are applied to facilitate drug discovery. The development and typical workflow of cryo-EM technique will be briefly introduced, followed by its specific applications in structure-based drug design, fragment-based drug discovery, proteolysis targeting chimeras, antibody drug development and drug repurposing. Besides cryo-EM, drug discovery innovation usually involves other state-of-the-art techniques such as artificial intelligence(AI), which is increasingly active in diverse areas. The combination of cryo-EM and AI provides an opportunity to minimize limitations of cryo-EM such as automation, throughput and interpretation of mediumresolution maps, and tends to be the new direction of future development of cryo-EM. The rapid development of cryo-EM will make it as an indispensable part of modern drug discovery.