This paper reports the results of field-based absolute gravity measurements aimed at detecting gravity change and crustal displacement caused by glacial isostatic adjustment. The project was initiated within the frame...This paper reports the results of field-based absolute gravity measurements aimed at detecting gravity change and crustal displacement caused by glacial isostatic adjustment. The project was initiated within the framework of the 53rd Japanese Antarctic Research Expedition (JARE53). Absolute gravity measurements, together with GPS measurements, were planned at several outcrops along the Prince Olav Coast and S6ya Coast of East Antarctica, including at Syowa Station. Since the icebreaker Shirase (AGB 5003) was unable to moor alongside Syowa Station, operations were somewhat restricted during JARE53. However, despite this setback, we were able to complete measurements at two sites: Syowa Station and Langhovde. The absolute gravity value at the Syowa Station IAGBN (A) site, observed using an FG-5 absolute gravimeter (serial number 210; FG-5 #210), was 982 524 322.7+0.1 ktGal, and the gravity change rate at the beginning of 2012 was -0.26 gGal.a-1. An absolute gravity value of 982 535 584.2~0.7 ktGal was obtained using a portable A-10 absolute gravimeter (serial number 017; A-10 #017) at the newly located site AGS01 in Langhovde.展开更多
A superconducting gravimeter (SG, model TT70#016, GWR Instruments) was deployed for the first time in Antarctica in 1992 at Syowa Station. Observations began in April 1993. Although the SG was equipped with a 10 K cry...A superconducting gravimeter (SG, model TT70#016, GWR Instruments) was deployed for the first time in Antarctica in 1992 at Syowa Station. Observations began in April 1993. Although the SG was equipped with a 10 K cryocooler, its liquid helium (LHe) required refilling twice a year to maintain its superconducting state. The LHe was produced by a separate helium liquefier. After continuous gravity measurement with the SG for 11 years, it was replaced by a second SG (CT#043) with a 4 K cryocooler in December 2003 in order to reduce loads of person in charge for LHe production. Because the manufacturer could not supply a replacement 4 K cryocooler, this SG ceased measurement in November 2009. In January 2010, a new superconducting gravimeter (OSG#058) was installed and had recorded high-quality gravity time series with data acquired every second for more than five years without interruption. Because the personal computer (PC) controlling the observation and data acquisition is connected with PCs in Japan through an Intelsat satellite communication link, we can check the status of observations in real time. It is also possible to fix remotely certain problems with the gravimeter. The observed gravity data are transferred daily to a data server in Japan. Also included in the upload are diagnostic data of the gravimeter such as the temperature of the coldhead and environmental data such as atmospheric pressure. Plots of the daily data are publicly available. The raw data with a 1 s sampling interval are also released to registered researchers. The released gravity time series along with the environmental data are greatly useful for investigating solid earth dynamics especially in the long period bands. We provide necessary information to use these long-range data sets.展开更多
文摘This paper reports the results of field-based absolute gravity measurements aimed at detecting gravity change and crustal displacement caused by glacial isostatic adjustment. The project was initiated within the framework of the 53rd Japanese Antarctic Research Expedition (JARE53). Absolute gravity measurements, together with GPS measurements, were planned at several outcrops along the Prince Olav Coast and S6ya Coast of East Antarctica, including at Syowa Station. Since the icebreaker Shirase (AGB 5003) was unable to moor alongside Syowa Station, operations were somewhat restricted during JARE53. However, despite this setback, we were able to complete measurements at two sites: Syowa Station and Langhovde. The absolute gravity value at the Syowa Station IAGBN (A) site, observed using an FG-5 absolute gravimeter (serial number 210; FG-5 #210), was 982 524 322.7+0.1 ktGal, and the gravity change rate at the beginning of 2012 was -0.26 gGal.a-1. An absolute gravity value of 982 535 584.2~0.7 ktGal was obtained using a portable A-10 absolute gravimeter (serial number 017; A-10 #017) at the newly located site AGS01 in Langhovde.
文摘A superconducting gravimeter (SG, model TT70#016, GWR Instruments) was deployed for the first time in Antarctica in 1992 at Syowa Station. Observations began in April 1993. Although the SG was equipped with a 10 K cryocooler, its liquid helium (LHe) required refilling twice a year to maintain its superconducting state. The LHe was produced by a separate helium liquefier. After continuous gravity measurement with the SG for 11 years, it was replaced by a second SG (CT#043) with a 4 K cryocooler in December 2003 in order to reduce loads of person in charge for LHe production. Because the manufacturer could not supply a replacement 4 K cryocooler, this SG ceased measurement in November 2009. In January 2010, a new superconducting gravimeter (OSG#058) was installed and had recorded high-quality gravity time series with data acquired every second for more than five years without interruption. Because the personal computer (PC) controlling the observation and data acquisition is connected with PCs in Japan through an Intelsat satellite communication link, we can check the status of observations in real time. It is also possible to fix remotely certain problems with the gravimeter. The observed gravity data are transferred daily to a data server in Japan. Also included in the upload are diagnostic data of the gravimeter such as the temperature of the coldhead and environmental data such as atmospheric pressure. Plots of the daily data are publicly available. The raw data with a 1 s sampling interval are also released to registered researchers. The released gravity time series along with the environmental data are greatly useful for investigating solid earth dynamics especially in the long period bands. We provide necessary information to use these long-range data sets.