期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于高斯过程建模的物联网数据不确定性度量与预测 被引量:16
1
作者 苑进 胡敏 +3 位作者 kesheng wang 刘雪美 侯加林 米庆华 《农业机械学报》 EI CAS CSCD 北大核心 2015年第5期265-272,共8页
物联网已经成为农业大数据最重要的数据源之一,自动观测数据的质量控制对农业生产分析以及基础科研数据应用非常重要。针对农业物联网观测的一类非平稳时间序列数据中的数据缺失、野值剔除、感知故障预警和长时间预测等问题,采用光滑弱... 物联网已经成为农业大数据最重要的数据源之一,自动观测数据的质量控制对农业生产分析以及基础科研数据应用非常重要。针对农业物联网观测的一类非平稳时间序列数据中的数据缺失、野值剔除、感知故障预警和长时间预测等问题,采用光滑弱假设高斯先验,构建了基于高斯过程的自回归模型表征的动态系统,并通过样本集学习,形成能考虑噪声干扰的传感变化规律建模,并可提供预测误差带用于预测数据的不确定性度量。针对原始数据的缺失和野值问题,采用基于高斯过程的短期预测,可补齐缺失数据,利用其不确定性度量可甄别数据野值,进行野值剔除与替换,并在此基础上判断感知故障;给出了基于输入数据不确定性传播的多步迭代预测方法,使长期预测仍可以跟踪农业数据的动态轨迹,并可为其预测值提供不确定性度量;将温室采集的真实传感数据用于分析试验,验证了高斯过程用于服务器端的农业时间序列数据采集质量控制的可行性。 展开更多
关键词 物联网 非平稳时间序列 高斯过程 不确定性度量 野值剔除 预测
在线阅读 下载PDF
酒精依赖的基于基因和基于通路的全基因组关联研究(英文) 被引量:1
2
作者 Lingjun ZUO Clarence K.ZHANG +5 位作者 Frederick G.SAYWARD Kei-Hoi CHEUNG kesheng wang John H.KRYSTAL Hongyu ZHAO Xingguang LUO 《上海精神医学》 CSCD 2015年第2期111-118,共8页
背景:信号通路中风险基因的构成可能可以解释酒精依赖风险基因协同的神经生物学作用。目的:识别酒精依赖的风险基因和风险基因通路。方法:我们采用基因富集(gene-set-rich)分析方法对酒精依赖进行了基于通路的全基因组关联分析(GWAS)。... 背景:信号通路中风险基因的构成可能可以解释酒精依赖风险基因协同的神经生物学作用。目的:识别酒精依赖的风险基因和风险基因通路。方法:我们采用基因富集(gene-set-rich)分析方法对酒精依赖进行了基于通路的全基因组关联分析(GWAS)。在包括1409名欧裔美国人(European-American,EA)酒精依赖者和1518名EA健康对照者的探索性样本人群中检测了近一百万个基因标志物。此外,将681名非裔美国人(African-American,AA)病例和508名AA健康受试者作为重测样本。结果:我们发现了几个与酒精依赖显著相关的可重复的全基因组风险基因和风险通路。在多重比较Bonferroni校正后,"细胞-细胞外基质相互作用"通路(EA样本中p<2.0E-4)和该通路中PXN基因(编码桩蛋白paxillin)(EA样本中p=3.9E-7)是最有可能的酒精依赖的危险因素。在EA样本(0.015≤p≤0.035)和AA样本(0.025≤p≤0.050)中还有两条富含酒精依赖相关基因的可重复的通路:"Na+/Cl-依赖性神经递质转运体"通路和"其他聚糖降解"通路。结论:一些基因和生物信号传导过程可能与酒精依赖的风险相关,本研究的发现为此提供了新的证据。 展开更多
关键词 全基因组 酒精 基础 关联 神经生物学 细胞外基质 信号通路 相互作用
在线阅读 下载PDF
A Two-Stage Approach for Electric Vehicle Routing Problem with Time Windows and Heterogeneous Recharging Stations
3
作者 Tianyu Luo Yong Heng +5 位作者 Lining Xing Teng Ren Qi Li Hu Qin Yizhi Hou kesheng wang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第5期1300-1322,共23页
An Electric Vehicle(EV)is an appropriate substitution for traditional transportation means for diminishing greenhouse gas emissions.However,decision-makers are beset by the limited driving range caused by the low batt... An Electric Vehicle(EV)is an appropriate substitution for traditional transportation means for diminishing greenhouse gas emissions.However,decision-makers are beset by the limited driving range caused by the low battery capacity and the long recharging time.To resolve the former issue,several transportation companies increases the travel distance of the EV by establishing recharging stations in various locations.The proposed Electric Vehicle-Routing Problem with Time Windows(E-VRPTW)and recharging stations are constructed in this context;it augments the VRPTW by reinforcing battery capacity constraints.Meanwhile,super-recharging stations are gradually emerging in the surroundings.They can decrease the recharging time for an EV but consume more energy than regular stations.In this paper,we first extend the E-VRPRTW by adding the elements of super-recharging stations.We then apply a two-stage heuristic algorithm driven by a dynamic programming process to solve the new proposed problem to minimize the travel and total recharging costs.Subsequently,we compare the experimental results of this approach with other algorithms on several sets of benchmark instances.Furthermore,we analyze the impact of super-recharging stations on the total cost of the logistic plan. 展开更多
关键词 Electric Vehicle(EV) vehicle routing Dynamic Programming(DP) two-stage algorithm
原文传递
A hybrid point cloud alignment method combining particle swarm optimization and iterative closest point method 被引量:2
4
作者 Quan Yu kesheng wang 《Advances in Manufacturing》 SCIE CAS 2014年第1期32-38,共7页
3D quality inspection is widely applied in many industrial fields including mould design, automotive and blade manufacturing, etc. A commonly used method is to obtain the point cloud of the inspected object and make a... 3D quality inspection is widely applied in many industrial fields including mould design, automotive and blade manufacturing, etc. A commonly used method is to obtain the point cloud of the inspected object and make a comparison between the point cloud and the corresponding CAD model or template. Thus, it is important to align the point cloud with the template first and foremost. Moreover, for the purpose of automatization of quality inspection, this alignment process is expected to be completed without manual interference. In this paper, we propose to combine the particle swarm optimization (PSO) with iterative closest point (ICP) algorithm to achieve the automated point cloud alignment. The combination of the two algorithms can achieve a balance between the alignment speed and accuracy, and avoid the local optimal caused by bad initial position of the point cloud. 展开更多
关键词 Quality inspection Point cloud alignment Particle swarm optimization (PSO) Iterative closest point(ICP)
原文传递
Quantity Flexibility Contract Model for Emergency Procurement Considering Supply Disruption 被引量:1
5
作者 Bin Wu Shuangwei Bai +2 位作者 Bijina Rajbhandari Bangyuan Li kesheng wang 《Complex System Modeling and Simulation》 2023年第2期143-156,共14页
Supply chain disruption risk usually poses a serious challenge to the management of emergency supplies procurement between the government and enterprises in cooperation.To research the impact of supply chain disruptio... Supply chain disruption risk usually poses a serious challenge to the management of emergency supplies procurement between the government and enterprises in cooperation.To research the impact of supply chain disruption on the supply and demand sides of emergency supplies for disaster relief,the emergency procurement model based on quantity flexibility contract is constructed.The model introduces a stockout disruption to measure the degree of supply chain disruption and uses per unit of material relief value to quantify government disaster relief benefits.Further,it analyzes the basic pricing strategy and the agreed order quantity between the government and enterprises,focusing on the negative impact of supply disruption on the government and enterprises.The model deduction and data analysis results show that supply disruption creates a“lose-lose”situation for governments and enterprises,reducing their benefits and willingness to cooperate.Finally,a sensitivity analysis is conducted on the case data to explain the decision-making changes in the contract price and flexibility parameters between the government and enterprises before and after the supply disruption. 展开更多
关键词 emergency procurement supply chain disruption quantity flexibility contract sensitivity analysis
原文传递
Quantum-Inspired Distributed Memetic Algorithm
6
作者 Guanghui Zhang Wenjing Ma +2 位作者 Keyi Xing Lining Xing kesheng wang 《Complex System Modeling and Simulation》 2022年第4期334-353,共20页
This paper proposed a novel distributed memetic evolutionary model,where four modules distributed exploration,intensified exploitation,knowledge transfer,and evolutionary restart are coevolved to maximize their streng... This paper proposed a novel distributed memetic evolutionary model,where four modules distributed exploration,intensified exploitation,knowledge transfer,and evolutionary restart are coevolved to maximize their strengths and achieve superior global optimality.Distributed exploration evolves three independent populations by heterogenous operators.Intensified exploitation evolves an external elite archive in parallel with exploration to balance global and local searches.Knowledge transfer is based on a point-ring communication topology to share successful experiences among distinct search agents.Evolutionary restart adopts an adaptive perturbation strategy to control search diversity reasonably.Quantum computation is a newly emerging technique,which has powerful computing power and parallelized ability.Therefore,this paper further fuses quantum mechanisms into the proposed evolutionary model to build a new evolutionary algorithm,referred to as quantum-inspired distributed memetic algorithm(QDMA).In QDMA,individuals are represented by the quantum characteristics and evolved by the quantum-inspired evolutionary optimizers in the quantum hyperspace.The QDMA integrates the superiorities of distributed,memetic,and quantum evolution.Computational experiments are carried out to evaluate the superior performance of QDMA.The results demonstrate the effectiveness of special designs and show that QDMA has greater superiority compared to the compared state-of-the-art algorithms based on Wilcoxon’s rank-sum test.The superiority is attributed not only to good cooperative coevolution of distributed memetic evolutionary model,but also to superior designs of each special component. 展开更多
关键词 distributed evolutionary algorithm memetic algorithm quantum-inspired evolutionary algorithm quantum distributed memetic algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部