期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Isothermal γ →ε phase transformation behavior in a Co-Cr-Mo alloy depending on thermal history during electron beam powder-bed additive manufacturing 被引量:1
1
作者 Yufan Zhao Yuichiro Koizumi +2 位作者 kenta aoyagi kenta Yamanaka Akihiko Chiba 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第15期162-170,共9页
Powder bed fusion with electron beam(PBF-EB),allows Co-Cr-Mo(CCM) implants with patientcustomization to be fabricated with high quality and complex geometry.However,the variability in the properties of PBF-EB-built CC... Powder bed fusion with electron beam(PBF-EB),allows Co-Cr-Mo(CCM) implants with patientcustomization to be fabricated with high quality and complex geometry.However,the variability in the properties of PBF-EB-built CCM alloy,mainly due to the lack of understanding of the mechanisms that govern microstructural heterogeneity,brings limitations in extensive application.In this study,the microstructural heterogeneity regarding the γ-fcc→ε-hcp phase transformation was characterized.The phase transformation during PBF-EB was analyzed depending on the thermal history that was elucidated by the numerical simulation.It revealed that isothermal γ→ε transformation occurred during the fabrication.Importantly,the difference in γ/ε phase distribution was a result of the thermal history determining which method phase transformation was taking place,which can be influenced by the PBF-EB process parameters.In the sample with a low energy input(Earea=2.6 J/mm2),the martensitic transformation was dominant.As the building height increased from the bottom,the e phase fraction decreased.On the other hand,in the sample with a higher energy input(Earea=4.4 J/mm2),the ε phase fo rmed via diffusional-massive transformation and only appea red in a short range of the lower part away from the bottom. 展开更多
关键词 Powder bed fusion with electron beam Phase transformation Thermal history Numerical simulation
原文传递
Effect of mechanical ball milling on the electrical and powder bed properties of gas-atomized Ti-48Al-2Cr-2Nb and elucidation of the smoke mechanism in the powder bed fusion electron b eam melting process
2
作者 Seungkyun Yim kenta aoyagi +2 位作者 Keiji Yanagihara Huakang Bian Akihiko Chiba 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第6期36-55,共20页
Smoke is unexpected powder-splashing caused by electrostatic force and is one of the main problems hindering the process stability and applicability of the powder bed fusion electron beam(PBF-EB)tech-nology.In this st... Smoke is unexpected powder-splashing caused by electrostatic force and is one of the main problems hindering the process stability and applicability of the powder bed fusion electron beam(PBF-EB)tech-nology.In this study,mechanical stimulation was suggested to suppress smoke of gas-atomized(GA)Ti-48Al-2Cr-2Nb powder using Al_(2)O_(3) and WC ball milling.The deformation mechanism of the GA powder depending on the ball milling media was discussed based on the developed particle morphology distribu-tion map and contact mechanics simulation.It was revealed that the rapid decrement of flowability and packing density after WC ball milling owing to the formation of angular fragments by the brittle fracture.The variation of surface and electrical properties by mechanical stimulation was investigated via XPS,TEM,and Impedance analysis.The electrical resistivity of the ball-milled powders gradually decreased with increasing milling duration,despite the increased oxide film thickness,and the capacitive response disappeared in Al-60 and WC-30 via metal-insulator transition.This could be due to the accumulation of strain and defects on the oxide film via mechanical stimulation.The smoke mechanism of ball-milled powders was discussed based on the percolation theory.In the smoke experiment,smoke was more suppressed for WC-10 and WC-20 than that for Al-40 and Al-50,respectively,despite the longer charge dissipation time.This could be due to the high probability of contact with conductive particles.For the Al-60 and WC-30 powders,smoke was further restricted by the formation of a percolation cluster with metal-like electrical conductivity.We believe that this study will contribute to a better understanding of the smoke mechanism and process optimization of the PBF-EB. 展开更多
关键词 Metal-insulator transition Electron beam melting additive manufacturing Packing density FLOWABILITY Smoke mechanism Percolation theory
原文传递
Effects of the aluminum concentration on twin boundary motion in pre-strained magnesium alloys
3
作者 Yujie Cui kenta aoyagi +2 位作者 Huakang Bian Yuichiro Hayasaka Akihiko Chiba 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第14期116-127,共12页
We investigated the effects of Al concentration on the reciprocated motion of twin boundaries in pre-strained Mg-Al-Zn alloys through a combination of applied compression and tension,in-situ electron-backscattering di... We investigated the effects of Al concentration on the reciprocated motion of twin boundaries in pre-strained Mg-Al-Zn alloys through a combination of applied compression and tension,in-situ electron-backscattering diffraction observations,and high-angle annular dark-field scanning transmission electron microscopy observations.The twin growth was restricted by increased Al concentration,which resulted in the occurrence of smaller-sized twins.The reverse motion of twin boundaries was also restricted,resulting in the formation of higher fractions of secondary twins and 2–5°boundaries during reverse tension.The secondary twins and 2–5°boundaries mainly contributed to the increased ultimate tensile strength of the pre-strained Mg alloys.This effect is more significant in Mg alloys with larger pre-compression.Moreover,the increased amount of the Al solute atoms,rather than the precipitates,mainly contributed to the increased strengthening effect on the twin boundary motion.Our research contributes to development of high-strength Mg alloys by stabilizing twin boundaries. 展开更多
关键词 Hexagonal close packed Magnesium alloy TWINNING Dislocations Strength Solute atoms
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部