Organometal halide perovskite based solar cells have emerged as one of the most promising candidates for low-cost and high-efficiency solar cell technologies. Here a Vapor Transfer Method (VTM) is used to fabricate ...Organometal halide perovskite based solar cells have emerged as one of the most promising candidates for low-cost and high-efficiency solar cell technologies. Here a Vapor Transfer Method (VTM) is used to fabricate high quality perovskite thin films in a balanced vacuum capsule. By adjusting the reaction tem- perature, CH_3NHl_3 saturated vapor which then reacts with Pbl_2 films can be controlled and the formation process of CH_3NH_3Pbl_3 perovskite films can be further influenced. Prepared perovskite films which ex- hibit pure phase, smooth surface and high crystallinity are assembled into planar heterojunction inverted solar cells. The whole fabrication process of solar cell devices is organic solution free. Finally, the cham- pion cell achieved power conversion efficiency (PCE) of 13.08% with negligible current-voltage hysteresis under fully open-air conditions. The photovoltaic performance could be further enhanced by optimizing perovskite composition and the device structure.展开更多
文摘Organometal halide perovskite based solar cells have emerged as one of the most promising candidates for low-cost and high-efficiency solar cell technologies. Here a Vapor Transfer Method (VTM) is used to fabricate high quality perovskite thin films in a balanced vacuum capsule. By adjusting the reaction tem- perature, CH_3NHl_3 saturated vapor which then reacts with Pbl_2 films can be controlled and the formation process of CH_3NH_3Pbl_3 perovskite films can be further influenced. Prepared perovskite films which ex- hibit pure phase, smooth surface and high crystallinity are assembled into planar heterojunction inverted solar cells. The whole fabrication process of solar cell devices is organic solution free. Finally, the cham- pion cell achieved power conversion efficiency (PCE) of 13.08% with negligible current-voltage hysteresis under fully open-air conditions. The photovoltaic performance could be further enhanced by optimizing perovskite composition and the device structure.