The electrocatalytic conversion of CO_(2) into valuable chemical feedstocks using renewable electricity offers a compelling strategy for closing the carbon loop.While copper-based materials are effective in catalyzing...The electrocatalytic conversion of CO_(2) into valuable chemical feedstocks using renewable electricity offers a compelling strategy for closing the carbon loop.While copper-based materials are effective in catalyzing CO_(2) to C_(2+)products,the instability of Cu^(+)species,which tend to reduce to Cu~0 at cathodic potentials during CO_(2) reduction,poses a significant challenge.Here,we report the development of SmCu_(2)O and investigate the influence of f-d orbital hybridization on the CO_(2) reduction reaction (CO_(2)RR).Supported by density functional theory (DFT) calculations,our experimental results demonstrate that hybridization between Sm^(3+)4f and Cu^(+)3d orbitals not only improves the adsorption of *CO intermediates and increases CO coverage to stabilize Cu^(+) but also facilitates CO_(2) activation and lowers the energy barriers for CAC coupling.Notably,Sm-Cu_(2)O achieves a Faradaic efficiency for C_(2)H_(4) that is 38%higher than that of undoped Cu_(2)O.Additionally,it sustains its catalytic activity over an extended operational period exceeding 7 h,compared to merely 2 h for the undoped sample.This research highlights the potential of fd orbital hybridization in enhancing the efficacy of copper-based catalysts for CO_(2)RR,pointing towards a promising direction for the development of durable,high-performance electrocatalysts for sustainable chemical synthesis.展开更多
This paper introduces an optimization method(SCE-SR)that combines shuffled complex evolution(SCE)and stochastic ranking(SR)to solve constrained reservoir scheduling problems,ranking individuals with both objectives an...This paper introduces an optimization method(SCE-SR)that combines shuffled complex evolution(SCE)and stochastic ranking(SR)to solve constrained reservoir scheduling problems,ranking individuals with both objectives and constrains considered.A specialized strategy is used in the evolution process to ensure that the optimal results are feasible individuals.This method is suitable for handling multiple conflicting constraints,and is easy to implement,requiring little parameter tuning.The search properties of the method are ensured through the combination of deterministic and probabilistic approaches.The proposed SCE-SR was tested against hydropower scheduling problems of a single reservoir and a multi-reservoir system,and its performance is compared with that of two classical methods(the dynamic programming and genetic algorithm).The results show that the SCE-SR method is an effective and efficient method for optimizing hydropower generation and locating feasible regions quickly,with sufficient global convergence properties and robustness.The operation schedules obtained satisfy the basic scheduling requirements of reservoirs.展开更多
Currently,osteochondral(OC)tissue engineering has become a potential treatment strategy in repairing chondral lesions and early osteoarthritis due to the limited self-healing ability of cartilage.However,it is still c...Currently,osteochondral(OC)tissue engineering has become a potential treatment strategy in repairing chondral lesions and early osteoarthritis due to the limited self-healing ability of cartilage.However,it is still challenging to ensure the integrity,physiological function and regeneration ability of stratified OC scaffolds in clinical application.Biomimetic OC scaffolds are attractive to overcome the above problems because of their similar biological and mechanical properties with native OC tissue.As a consequence,the researches on biomimetic design to achieve the tissue function of each layer,and additive manufacture(AM)to accomplish composition switch and ultrastructure of personalized OC scaffolds have made a remarkable progress.In this review,the design methods of biomaterial and structure as well as computer-aided design,and performance prediction of biopolymer-based OC scaffolds are presented;then,the characteristics and limitations of AM technologies and the integrated manufacture schemes in OC tissue engineering are summarized;finally,the novel biomaterials and techniques and the inevitable trends of multifunctional bio-manufacturing system are discussed for further optimizing production of tissue engineering OC scaffolds.展开更多
IntroductionBone defect caused by specific diseases or medications is very common. Autologous bone, allogeneic bone or xenogeneic bone transplantation is commonly used in clinical practice. However, autologous bone so...IntroductionBone defect caused by specific diseases or medications is very common. Autologous bone, allogeneic bone or xenogeneic bone transplantation is commonly used in clinical practice. However, autologous bone sources are limited. Xenogeneic bone cannot participate in metabolism. Because of the development of bone tissue engineering, the transplantation of new scaffold materials and autologous cells has opened up new treatment options for bone defects. The bone tissue engineering principle is applied to construct a degradable porous bone scaffold, which is implanted into the human body after loading bone cells, growth factors, etc.展开更多
基金Financial support from the National Natural Science Foundation of China(grant nos.22379006,21575016,U20A20154,22279005)from the National Program for Support of Top-notch Young Professionals is gratefully acknowledged。
文摘The electrocatalytic conversion of CO_(2) into valuable chemical feedstocks using renewable electricity offers a compelling strategy for closing the carbon loop.While copper-based materials are effective in catalyzing CO_(2) to C_(2+)products,the instability of Cu^(+)species,which tend to reduce to Cu~0 at cathodic potentials during CO_(2) reduction,poses a significant challenge.Here,we report the development of SmCu_(2)O and investigate the influence of f-d orbital hybridization on the CO_(2) reduction reaction (CO_(2)RR).Supported by density functional theory (DFT) calculations,our experimental results demonstrate that hybridization between Sm^(3+)4f and Cu^(+)3d orbitals not only improves the adsorption of *CO intermediates and increases CO coverage to stabilize Cu^(+) but also facilitates CO_(2) activation and lowers the energy barriers for CAC coupling.Notably,Sm-Cu_(2)O achieves a Faradaic efficiency for C_(2)H_(4) that is 38%higher than that of undoped Cu_(2)O.Additionally,it sustains its catalytic activity over an extended operational period exceeding 7 h,compared to merely 2 h for the undoped sample.This research highlights the potential of fd orbital hybridization in enhancing the efficacy of copper-based catalysts for CO_(2)RR,pointing towards a promising direction for the development of durable,high-performance electrocatalysts for sustainable chemical synthesis.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFC0401702)the Fundamental Research Funds for the Central Universities(Grant No.2018B11214)the National Natural Science Foundation of China(Grants No.51379059 and 51579002)
文摘This paper introduces an optimization method(SCE-SR)that combines shuffled complex evolution(SCE)and stochastic ranking(SR)to solve constrained reservoir scheduling problems,ranking individuals with both objectives and constrains considered.A specialized strategy is used in the evolution process to ensure that the optimal results are feasible individuals.This method is suitable for handling multiple conflicting constraints,and is easy to implement,requiring little parameter tuning.The search properties of the method are ensured through the combination of deterministic and probabilistic approaches.The proposed SCE-SR was tested against hydropower scheduling problems of a single reservoir and a multi-reservoir system,and its performance is compared with that of two classical methods(the dynamic programming and genetic algorithm).The results show that the SCE-SR method is an effective and efficient method for optimizing hydropower generation and locating feasible regions quickly,with sufficient global convergence properties and robustness.The operation schedules obtained satisfy the basic scheduling requirements of reservoirs.
基金Funding was supported by the Key Research and Development Program of Shaanxi Province(Grant No.2020ZDLSF04-07)the National Key Research and Development Program of China(Grant No.2019QY(Y)0502)+2 种基金the National Natural Science Foundation of China(Grant No.51905438)the Innovation Platform of Biofabrication(Grant No.17SF0002)the Fundamental Research Funds for the Central Universities(Grant No.31020190502009).
文摘Currently,osteochondral(OC)tissue engineering has become a potential treatment strategy in repairing chondral lesions and early osteoarthritis due to the limited self-healing ability of cartilage.However,it is still challenging to ensure the integrity,physiological function and regeneration ability of stratified OC scaffolds in clinical application.Biomimetic OC scaffolds are attractive to overcome the above problems because of their similar biological and mechanical properties with native OC tissue.As a consequence,the researches on biomimetic design to achieve the tissue function of each layer,and additive manufacture(AM)to accomplish composition switch and ultrastructure of personalized OC scaffolds have made a remarkable progress.In this review,the design methods of biomaterial and structure as well as computer-aided design,and performance prediction of biopolymer-based OC scaffolds are presented;then,the characteristics and limitations of AM technologies and the integrated manufacture schemes in OC tissue engineering are summarized;finally,the novel biomaterials and techniques and the inevitable trends of multifunctional bio-manufacturing system are discussed for further optimizing production of tissue engineering OC scaffolds.
文摘IntroductionBone defect caused by specific diseases or medications is very common. Autologous bone, allogeneic bone or xenogeneic bone transplantation is commonly used in clinical practice. However, autologous bone sources are limited. Xenogeneic bone cannot participate in metabolism. Because of the development of bone tissue engineering, the transplantation of new scaffold materials and autologous cells has opened up new treatment options for bone defects. The bone tissue engineering principle is applied to construct a degradable porous bone scaffold, which is implanted into the human body after loading bone cells, growth factors, etc.