Lead sulfide(PbS)colloidal quantum dot(CQD)photodiodes integrated with silicon-based readout integrated circuits(ROICs)offer a promising solution for the next-generation short-wave infrared(SWIR)imaging technology.Des...Lead sulfide(PbS)colloidal quantum dot(CQD)photodiodes integrated with silicon-based readout integrated circuits(ROICs)offer a promising solution for the next-generation short-wave infrared(SWIR)imaging technology.Despite their potential,large-size CQD photodiodes pose a challenge due to high dark currents resulting from surface states on nonpassivated(100)facets and trap states generated by CQD fusion.In this work,we present a novel approach to address this issue by introducing double-ended ligands that supplementally passivate(100)facets of halidecapped large-size CQDs,leading to suppressed bandtail states and reduced defect concentration.Our results demonstrate that the dark current density is highly suppressed by about an order of magnitude to 9.6 nA cm^(2) at -10 mV,which is among the lowest reported for PbS CQD photodiodes.Furthermore,the performance of the photodiodes is exemplary,yielding an external quantum efficiency of 50.8%(which corresponds to a responsivity of 0.532 A W^(-1))and a specific detectivity of 2.5×10^(12) Jones at 1300 nm.By integrating CQD photodiodes with CMOS ROICs,the CQD imager provides high-resolution(640×512)SWIR imaging for infrared penetration and material discrimination.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:U22A2083,62204091,62374068National Key Research and Development Program of China,Grant/Award Number:2021YFA0715502+5 种基金Key R&D program of Hubei Province,Grant/Award Number:2021BAA014Innovation Project of Optics Valley Laboratory,Grant/Award Numbers:OVL2021BG009,OVL2023ZD002Exploration Project of Natural Science Foundation of Zhejiang Province,Grant/Award Number:LY23F040005Fund for Innovative Research Groups of the Natural Science Foundation of Hubei Province,Grant/Award Number:2020CFA034Fund from Science,Technology and Innovation Commission of Shenzhen Municipality,Grant/Award Numbers:GJHZ20210705142540010,GJHZ20220913143403007China Postdoctoral Science Foundation,Grant/Award Numbers:2021M691118,2022M711237,2022M721243,2023T160244。
文摘Lead sulfide(PbS)colloidal quantum dot(CQD)photodiodes integrated with silicon-based readout integrated circuits(ROICs)offer a promising solution for the next-generation short-wave infrared(SWIR)imaging technology.Despite their potential,large-size CQD photodiodes pose a challenge due to high dark currents resulting from surface states on nonpassivated(100)facets and trap states generated by CQD fusion.In this work,we present a novel approach to address this issue by introducing double-ended ligands that supplementally passivate(100)facets of halidecapped large-size CQDs,leading to suppressed bandtail states and reduced defect concentration.Our results demonstrate that the dark current density is highly suppressed by about an order of magnitude to 9.6 nA cm^(2) at -10 mV,which is among the lowest reported for PbS CQD photodiodes.Furthermore,the performance of the photodiodes is exemplary,yielding an external quantum efficiency of 50.8%(which corresponds to a responsivity of 0.532 A W^(-1))and a specific detectivity of 2.5×10^(12) Jones at 1300 nm.By integrating CQD photodiodes with CMOS ROICs,the CQD imager provides high-resolution(640×512)SWIR imaging for infrared penetration and material discrimination.
基金This work was supported by the National Key Research and Development Program of China(2021YFA0715502)the National Natural Science Foundation of China(61904065,61974052,and 62204091)+5 种基金Key R&D Program of Hubei Province(2021BAA014)International Science and Technology Cooperation Project of Hubei Province(2021EHB010)the fund for Innovative Research Groups of the Natural Science Foundation of Hubei Province(2020CFA034)Scientific Research Project of Wenzhou(G20210013)the China Postdoctoral Science Foundation(2021M691118,and 2022M711237)the Fund from Science,Technology and Innovation Commission of Shenzhen Municipality(GJHZ20210705142540010).