This study is the fi rst to depict typhoon-induced continental shelf wave(CSW)propagation in the eastern Taiwan Strait(TWS)during the passage of Typhoon Meranti in 2016 using tidal gauge data and along-track satellite...This study is the fi rst to depict typhoon-induced continental shelf wave(CSW)propagation in the eastern Taiwan Strait(TWS)during the passage of Typhoon Meranti in 2016 using tidal gauge data and along-track satellite altimeter data.The strong amplitude response of sea level oscillations(within the range of 0.30–0.54 m)as a free,barotropic CSW after Meranti,which impacted the TWS,was clearly detected in time and frequency(in bands of 64–81 h)using wavelet and cross-wavelet analyses.The measured group and phase speeds were consistent with the dispersion curves for CSW with the fi rst-mode derived from the cross-shelf sections of the eastern TWS,with the mean speeds reaching 3 and 5.6±0.7 m/s,respectively.Coincidentally,the typhoon-induced sea level anomaly(SLA)was also captured by the satellite altimeter before this CSW entered into the TWS.Using the theoretical cross-shore CSW modes to fi t the SLA data,the results indicated that the fi rst three wave modes can interpret this CSW event appeared in the southern TWS very well,with the fi rst mode being the dominant one.展开更多
In this paper,the intra-seasonal variability of the abyssal currents in the China Ocean Mineral Resources Association(COMRA)polymetallic nodule contact area,located in the western part of the Clarion and Clipperton Fr...In this paper,the intra-seasonal variability of the abyssal currents in the China Ocean Mineral Resources Association(COMRA)polymetallic nodule contact area,located in the western part of the Clarion and Clipperton Fraction Zone in the tropical East Pacific,is investigated using direct observations from subsurface mooring instruments as well as sea-surface height data and reanalysis products.Mooring observations were conducted from September 13,2017 to August 15,2018 in the COMRA contact area(10°N,154°W).The results were as follows:(1)At depths below 200 m,the kinetic energy of intra-seasonal variability(20-100 d)accounts for more than 40%of the overall low-frequency variability,while the ratio reaches more than 50%below 2000 m.(2)At depths below 200 m,currents show a synchronous oscillation with a characteristic time scale of 30 d,lasting from October to the following January;the energy of the 30-d oscillation increases with depth until the layer of approximately 4616 m,and the maximum velocity is approximately 10 cm/s.(3)The 30-d oscillation of deep currents is correlated with the tropical instability waves in the upper ocean.展开更多
Near-inertial motions contribute most of the velocity shear in the upper ocean.In the Bay of Bengal(BoB),the annual-mean energy flux from the wind to near-inertial motions in the mixed layer in 2013 is dominated by tr...Near-inertial motions contribute most of the velocity shear in the upper ocean.In the Bay of Bengal(BoB),the annual-mean energy flux from the wind to near-inertial motions in the mixed layer in 2013 is dominated by tropical cyclone(TC)processes.However,due to the lack of long-term observations of velocity profiles,our knowledge about interior near-inertial waves(NIWs)as well as their shear features is limited.In this study,we quantified the contribution of NIWs to shear by integrating the wavenumber-frequency spectra estimated from velocity profiles in the upper layers(40-440 m)of the southern Bo B from April 2013 to May 2014.It is shown that the annual-mean proportion of near-inertial shear out of the total is approximately 50%,and the high contribution is mainly due to the enhancement of the TC processes during which the near-inertial shear accounts for nearly 80%of the total.In the steady monsoon seasons,the near-inertial shear is dominant to or at least comparable with the subinertial shear.The contribution of NIWs to the total shear is lower during the summer monsoon than during the winter monsoon owing to more active mesoscale eddies and higher subinertial shear during the summer monsoon.The Doppler shifting of the M_(2)internal tide has little effect on the main results since the proportion of shear from the tidal motions is much lower than that from the near-inertial and subinertial motions.展开更多
The effects of the number of layers,the arrangement of carbon fiber(CF)tow and the epoxy resin(ER)matrix on the fire performance of carbon fiber/epoxy composites(CFEC)were studied by a variety of experimental methods....The effects of the number of layers,the arrangement of carbon fiber(CF)tow and the epoxy resin(ER)matrix on the fire performance of carbon fiber/epoxy composites(CFEC)were studied by a variety of experimental methods.The results show that the number of layers of CF tow has influence on the combustion characteristics and fire propagation of the composites.The arrangement of CF tow has influence on flame propagation rate and high temperature mechanicalproperties.The mechanism of the influence of the number of layers of CF tow on the composite is mainly due to the different thermal capacity of ER matrix.The effect of the arrangement of CF tow on the fire performance of the composite is mainly due to the inhibition and obstruction of the tow on the combustion of ER matrix.The influence on the high temperature mechanicalproperties is mainly due to the different arrangement direction of CF tow.The fitting equation of the mechanicalproperties of the samples was obtained.This equation could be used to predict the samples’tensile strength from 25°C to 150℃by comparing with the experimental results.Taking the carbon fiber woven cloth(C)applied in the fuselage material as an example,combining the influencing factors of various parameters in the fire field,some suggestions are put forward combined with the research conclusion.展开更多
Elucidating the intricate correlation between calendering,structure,and performance is crucial to comprehending the relationship between performance parameters and process steps of lithium-ion batteries(LIBs).Discrete...Elucidating the intricate correlation between calendering,structure,and performance is crucial to comprehending the relationship between performance parameters and process steps of lithium-ion batteries(LIBs).Discrete element method(DEM)simulations were adopted in this work to calculate the interparticle force and stress tensor under incremental calendering process conditions,which revealed the effect of the anisotropy of complex contact force network on the anisotropy of heat transfer within porous electrode.The thermal conductivity of electrode was predicted using porosity to characterize the process-structure-performance correlation.The comprehensive influence of contact number and con-tact area between particles and current collector determines the magnitude of interfacial thermal resistance and interfacial heat transfer coefficient.For the first time,this work quantitatively analyzed the structural mechanics and heat transfer mechanism during calendering process of porous electrodes,and the results indicate a promising way to optimize and design battery electrode structures.展开更多
Antibiotic resistance in aquatic environment has become an important pollution problem worldwide. In recent years, much attention was paid to antibiotic resistance in urban drinking water systems due to its close rela...Antibiotic resistance in aquatic environment has become an important pollution problem worldwide. In recent years, much attention was paid to antibiotic resistance in urban drinking water systems due to its close relationship with the biosafety of drinking water. This review was focused on the mechanisms of antibiotic resistance, as well as the presence, dissemination and removal of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the urban drinking water system. First, the presence of ARB and ARGs in the drinking water source was discussed. The variation of concentration of ARGs and ARB during coagulation, sedimentation and filtration process were provided subsequently, in which filtration was proved to be a promising technology to remove ARGs. However, biological activated carbon (BAC) process and drinking water distribution systems (DWDSs) could be incubators which promote the antibiotic resistance, due to the enrichment of ARGs and ARB in the biofilms attached to the active carbon and pipe wall. Besides, as for disinfection process, mechanisms of the inactivation of ARB and the promotion of conjugative transfer of ARGs under chlorine, ozone and UV disinfection were described in detail. Here we provide some theoretical support for future researches which aim at antibiotic resistance controlling in drinking water.展开更多
In this chapter, starting with a brief review of the research history and current status in the studies of the Ordovician chronostratigraphy in China, the subdivision of the Ordovician System, definition and recogniti...In this chapter, starting with a brief review of the research history and current status in the studies of the Ordovician chronostratigraphy in China, the subdivision of the Ordovician System, definition and recognition of its series and stage boundaries, and possible stratigraphic gaps are discussed in details in order to establish a multidisciplinary stratigraphic correlation through an integrated approach including lithostratigraphy, biostratigraphy, radiometric dating, chemostratigraphy and magnetostratigraphy. Being internationally accepted, the Ordovician System is now subdivided into three series and seven stages, in ascending order, Lower(Tremadocian, Floian), Middle(Dapingian, Darriwilian) and Upper series(Sandbian, Katian,Hirnantian). Three of the seven "Golden Spikes" defining the bases of the Ordovician stages, which were established in 1997–2007, are located in China. As a regionally applied chronostratigraphy, the Ordovician System was subdivided in China into Lower(Xinchangian, Yiyangian), Middle(Dapingian, Darriwilian) and Upper series(Neichiashanian, Chientangkiangian,Hirnantian). This scheme agrees largely with the standard international classification, which can actually be directly applied to China, except for some special circumstances where the Neichiashanian and Chientangkiangian stages of the Upper Ordovician are used. Based on the new studies in recent years and distinctions and differences recognized in the development of the Ordovician System in the constituent terranes of China, a new framework for correlation among the major Chinese palaeoplates or terranes, e.g. South China, North China(including Tarim and Qaidam) and Xizang(Tibet)-western Yunnan, has been established. However, it has been recognized herein that uncertainties still remain on defining the base of the Tremadocian,Dapingian and Katian, and on the correlation between different mega-facies. More specifically, for the Tremadocian, the precise correlation of its base will depend on the better-defined conodont taxonomy, while for the Dapingian and Katian, on the correlation between different mega-facies. It is worthwhile to note that the chemostratigraphic studies of the Ordovician System in China produced the carbonate δ13 C curves for the Darriwilian(Middle Ordovician) and Katian(Upper Ordovician), which show significant differences from the composite global curve. Record of the Ordovician isotopic dating is relatively rare in China, with only three reliable ages from zircons that are all from the upper Katian to Hirnantian of the Upper Ordovician.Abundant bentonite beds in the Upper Ordovician of South China will also provide unique opportunities to advance the isotopic dating and related researches. Studies on the Ordovician magnetostratigraphy need to be significantly enhanced in China, as currently all the available results are restricted to the Lower Ordovician of North China, although they can be correlated with those known from other parts of the world. The analysis of the durational unevenness of the seven stages in the Ordovician supports the possibility to further subdivide the long-durational Tremadocian, Darriwilian and Katian stages, each into two substages.展开更多
Stratigraphic hiatuses of variable time intervals within the Rhuddanian to early Aeronian (Llandovery, Silurian) are identified in the area bordering East Chongqing, West Hubei and Northwest Hunan in central China. ...Stratigraphic hiatuses of variable time intervals within the Rhuddanian to early Aeronian (Llandovery, Silurian) are identified in the area bordering East Chongqing, West Hubei and Northwest Hunan in central China. Their distribution suggested the existence of a local uplift, traditionally named the Yichang Uplift. The diachronous nature of the basal black shale of the Lungmachi Formation crossing different belts of this Uplift signifies the various developing stages during the uplifting process. The present paper defines the temporal and spatial distribution pattern of the Yichang Uplift, which might be one of the important controlling factors for the preservation and distribution of the shale gas in this region, as it has been demonstrated that the shale gas exploration is generally less promising in the areas where more of the basal part of the Lungmachi Formation is missing. Therefore, better understanding of the circumjacent distribution pattern developed throughout the uplifting process may provide the important guidance for the shale gas exploration. The present work is a sister study to the published paper, "Stage-progressive distribution pattern of the Lungrnachian black graplolitic shales from Guizhou to Chongqing, Central China". These two studies thus provide a complete Ordovician-Silurian black shale distribution pattern in the Middle and Upper Yangtze, a region with the major shale gas fields in China.展开更多
The biological activated carbon (BAC) is a popular advanced water treatment to the provision of safe water supply. A bench-scale device was designed to gain a better insight into microbial diversity and community stru...The biological activated carbon (BAC) is a popular advanced water treatment to the provision of safe water supply. A bench-scale device was designed to gain a better insight into microbial diversity and community structure of BAC biofilm by using high-throughput sequencing method. Both samples of BAC biofilm (the first, third and fifth month) and water (inlet water and outlet water of carbon filter, outlet water of backwashing) were analyzed to evaluate the impact of carbon filter depth, running time and backwash process. The results showed that the microbial diversity of biofilm decreased generally with the increase of carbon filter depth and biofilm reached a steady-state at the top layer of BAC after three months' running. Proteobacteria (71.02%-95.61%) was found to be dominant bacteria both in biofilms and water samples. As one of opportunistic pathogen, the Pseudomonas aeruginosa in the outlet water of device (1.20%) was about eight times higher than that in the inlet water of device (0.16%) at the genus level after five-month operation. To maintain the safety of drinking water, the backwash used in this test could significantly remove Sphingobacteria (from 8.69% to 5.09%, p < 0.05) of carbon biofilm. After backwashing, the operational taxonomic units (OTUs) number and the Shannon index decreased significantly (p <0.05) at the bottom of carbon column and we found the Proteobacteria increased by about 10% in all biofilm samples from different filter depth. This study reveals the transformation of BAC biofilm with the impact of running time and backwashing.展开更多
Bacterial community in the drinking water distribution system (DWDS) was regulated by multiple environmental factors, many of which varied as a function of water age. In this study, four water samples with different...Bacterial community in the drinking water distribution system (DWDS) was regulated by multiple environmental factors, many of which varied as a function of water age. In this study, four water samples with different water ages, including finished water (FW, 0 d) and tap water (TW) [TWI (1 d), TW2(2 d) and TW3(3 d)], were collected along with the mains of a practical DWDS, and the bacterial community was investigated by high-throughput sequencing technique. Results indicated that the residual chlorine declined with the increase of water age, accompanied by the increase of dissolved organic matter, total bacteria counts and bacterial diversity (Shannon). For bacterial community composition, although Proteobacteria phylum (84.12%-97.6%) and Alphaproteobacteria class (67.42c/,~93.09%) kept dominate, an evident regular was observed at the order level. In detail, the relative abundance of most of other residual orders increased with different degrees from the start to the end of the DWDS, while a downward trend was uniquely observed in terms of Rhizobiales, who was inferred to be chlorine-resistant and be helpful for inhibiting pipes corrosion. Moreover, some OTUs were found to be closely related with species possessing pathogenicity and chlorine-resistant ability, so it was recommended that the use of agents other than chlorine or agents that can act synergically with chlorine should be developed for drinking water disinfection. This paper revealed bacterial community variations along the mains of the DWDS and the result was helpful for understanding bacterial ecology in the DWDS.展开更多
Coronaviruses, such as severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus, pose significant public health threats. Bats have been suggested to act as natural reservoirs for ...Coronaviruses, such as severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus, pose significant public health threats. Bats have been suggested to act as natural reservoirs for both these viruses, and periodic monitoring of coronaviruses in bats may thus provide important clues about emergent infectious viruses. The Eastern bent-wing bat Miniopterus fuliginosus is distributed extensively throughout China. We therefore analyzed the genetic diversity of coronaviruses in samples of M. fuliginosus collected from nine Chinese provinces during 2011–2013. The only coronavirus genus found was Alphacoronavirus. We established six complete and five partial genomic sequences of alphacoronaviruses, which revealed that they could be divided into two distinct lineages, with close relationships to coronaviruses in Miniopterus magnater and Miniopterus pusillus. Recombination was confirmed by detecting putative breakpoints of Lineage 1 coronaviruses in M. fuliginosus and M. pusillus(Wu et al., 2015), which supported the results of topological and phylogenetic analyses. The established alphacoronavirus genome sequences showed high similarity to other alphacoronaviruses found in other Miniopterus species, suggesting that their transmission in different Miniopterus species may provide opportunities for recombination with different alphacoronaviruses. The genetic information for these novel alphacoronaviruses will improve our understanding of the evolution and genetic diversity of coronaviruses, with potentially important implications for the transmission of human diseases.展开更多
The coronavirus disease 2019(COVID-19)epidemic has become a global public health emergency over last months.As of September 14th,over 28,000,000 confirmed cases and 917,000 deaths have been reported from all over the ...The coronavirus disease 2019(COVID-19)epidemic has become a global public health emergency over last months.As of September 14th,over 28,000,000 confirmed cases and 917,000 deaths have been reported from all over the world.1 Its large-scale outbreak and pandemic cause an extreme shortage of personal protective equipment(PPE)andmedical supplies such as face masks,testing kits,nasopharyngeal swabs,and medical ventilators in the early stage,which consequently leads to the collapse of local medical systems.2 It turns out that measures like lockdown and travel bans are themost effective strategies in response to an epidemic at an early stage with insufficient knowledge.3 However,those physical isolation measures will inevitably result in work stoppages and have a great impact on industrial production.The supply of raw materials and components,and the production and transportation of final products are greatly restricted under a global supply chain.4 This further aggravates the shortage of anti-epidemic supplies and so the vicious cycle begins.展开更多
基金Supported by the Science Foundation of Fujian Province(No.2019J01119)the Scientifi c Research Foundation of Third Institute of Oceanography,MNR(Nos.2017011,2019018)+1 种基金the National Natural Science Foundation of China(No.41506014)the National Key Research and Development Program of China(No.2016YFC1402607)。
文摘This study is the fi rst to depict typhoon-induced continental shelf wave(CSW)propagation in the eastern Taiwan Strait(TWS)during the passage of Typhoon Meranti in 2016 using tidal gauge data and along-track satellite altimeter data.The strong amplitude response of sea level oscillations(within the range of 0.30–0.54 m)as a free,barotropic CSW after Meranti,which impacted the TWS,was clearly detected in time and frequency(in bands of 64–81 h)using wavelet and cross-wavelet analyses.The measured group and phase speeds were consistent with the dispersion curves for CSW with the fi rst-mode derived from the cross-shelf sections of the eastern TWS,with the mean speeds reaching 3 and 5.6±0.7 m/s,respectively.Coincidentally,the typhoon-induced sea level anomaly(SLA)was also captured by the satellite altimeter before this CSW entered into the TWS.Using the theoretical cross-shore CSW modes to fi t the SLA data,the results indicated that the fi rst three wave modes can interpret this CSW event appeared in the southern TWS very well,with the fi rst mode being the dominant one.
基金The Fund of China Ocean Mineral Resources R&D Association under contract No.DY135-E2-5-01the National Program on Global Change and Air-Sea InteractionⅡunder contract No.GASI-04-WLHY-01。
文摘In this paper,the intra-seasonal variability of the abyssal currents in the China Ocean Mineral Resources Association(COMRA)polymetallic nodule contact area,located in the western part of the Clarion and Clipperton Fraction Zone in the tropical East Pacific,is investigated using direct observations from subsurface mooring instruments as well as sea-surface height data and reanalysis products.Mooring observations were conducted from September 13,2017 to August 15,2018 in the COMRA contact area(10°N,154°W).The results were as follows:(1)At depths below 200 m,the kinetic energy of intra-seasonal variability(20-100 d)accounts for more than 40%of the overall low-frequency variability,while the ratio reaches more than 50%below 2000 m.(2)At depths below 200 m,currents show a synchronous oscillation with a characteristic time scale of 30 d,lasting from October to the following January;the energy of the 30-d oscillation increases with depth until the layer of approximately 4616 m,and the maximum velocity is approximately 10 cm/s.(3)The 30-d oscillation of deep currents is correlated with the tropical instability waves in the upper ocean.
基金The National Key Research and Development Program of China under contract No.2016YFC1401403the State Oceanic Administration(SOA)Program on Global Change and Air-Sea Interactions under contract No.GASI-IPOVAI-02+2 种基金the China Ocean Mineral Resources R&D Association under contract No.DY135-E2-4the Scientific Research Foundation of Third Institute of OceanographySOA under contract Nos 2018001,2017012 and 2014028。
文摘Near-inertial motions contribute most of the velocity shear in the upper ocean.In the Bay of Bengal(BoB),the annual-mean energy flux from the wind to near-inertial motions in the mixed layer in 2013 is dominated by tropical cyclone(TC)processes.However,due to the lack of long-term observations of velocity profiles,our knowledge about interior near-inertial waves(NIWs)as well as their shear features is limited.In this study,we quantified the contribution of NIWs to shear by integrating the wavenumber-frequency spectra estimated from velocity profiles in the upper layers(40-440 m)of the southern Bo B from April 2013 to May 2014.It is shown that the annual-mean proportion of near-inertial shear out of the total is approximately 50%,and the high contribution is mainly due to the enhancement of the TC processes during which the near-inertial shear accounts for nearly 80%of the total.In the steady monsoon seasons,the near-inertial shear is dominant to or at least comparable with the subinertial shear.The contribution of NIWs to the total shear is lower during the summer monsoon than during the winter monsoon owing to more active mesoscale eddies and higher subinertial shear during the summer monsoon.The Doppler shifting of the M_(2)internal tide has little effect on the main results since the proportion of shear from the tidal motions is much lower than that from the near-inertial and subinertial motions.
基金sponsored by Project 51874313 supported by National Natural Science Foundation of China.
文摘The effects of the number of layers,the arrangement of carbon fiber(CF)tow and the epoxy resin(ER)matrix on the fire performance of carbon fiber/epoxy composites(CFEC)were studied by a variety of experimental methods.The results show that the number of layers of CF tow has influence on the combustion characteristics and fire propagation of the composites.The arrangement of CF tow has influence on flame propagation rate and high temperature mechanicalproperties.The mechanism of the influence of the number of layers of CF tow on the composite is mainly due to the different thermal capacity of ER matrix.The effect of the arrangement of CF tow on the fire performance of the composite is mainly due to the inhibition and obstruction of the tow on the combustion of ER matrix.The influence on the high temperature mechanicalproperties is mainly due to the different arrangement direction of CF tow.The fitting equation of the mechanicalproperties of the samples was obtained.This equation could be used to predict the samples’tensile strength from 25°C to 150℃by comparing with the experimental results.Taking the carbon fiber woven cloth(C)applied in the fuselage material as an example,combining the influencing factors of various parameters in the fire field,some suggestions are put forward combined with the research conclusion.
基金the Key Research and Development Projects of Hebei Province(grant No.20314402D).
文摘Elucidating the intricate correlation between calendering,structure,and performance is crucial to comprehending the relationship between performance parameters and process steps of lithium-ion batteries(LIBs).Discrete element method(DEM)simulations were adopted in this work to calculate the interparticle force and stress tensor under incremental calendering process conditions,which revealed the effect of the anisotropy of complex contact force network on the anisotropy of heat transfer within porous electrode.The thermal conductivity of electrode was predicted using porosity to characterize the process-structure-performance correlation.The comprehensive influence of contact number and con-tact area between particles and current collector determines the magnitude of interfacial thermal resistance and interfacial heat transfer coefficient.For the first time,this work quantitatively analyzed the structural mechanics and heat transfer mechanism during calendering process of porous electrodes,and the results indicate a promising way to optimize and design battery electrode structures.
文摘Antibiotic resistance in aquatic environment has become an important pollution problem worldwide. In recent years, much attention was paid to antibiotic resistance in urban drinking water systems due to its close relationship with the biosafety of drinking water. This review was focused on the mechanisms of antibiotic resistance, as well as the presence, dissemination and removal of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the urban drinking water system. First, the presence of ARB and ARGs in the drinking water source was discussed. The variation of concentration of ARGs and ARB during coagulation, sedimentation and filtration process were provided subsequently, in which filtration was proved to be a promising technology to remove ARGs. However, biological activated carbon (BAC) process and drinking water distribution systems (DWDSs) could be incubators which promote the antibiotic resistance, due to the enrichment of ARGs and ARB in the biofilms attached to the active carbon and pipe wall. Besides, as for disinfection process, mechanisms of the inactivation of ARB and the promotion of conjugative transfer of ARGs under chlorine, ozone and UV disinfection were described in detail. Here we provide some theoretical support for future researches which aim at antibiotic resistance controlling in drinking water.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41290260, 41772005)the Chinese Academy of Sciences New Frontiers Special Grants (Grant Nos. XDB10010100, XDB26000000)+1 种基金the SAFEA Project (Grant No. 20140491530), the National Science and Technology Major Project (Grant No. 2017ZX05036-001-004)the MSTof China Special Grants for Basic Science Projects (Grant No. 2013FY111000)
文摘In this chapter, starting with a brief review of the research history and current status in the studies of the Ordovician chronostratigraphy in China, the subdivision of the Ordovician System, definition and recognition of its series and stage boundaries, and possible stratigraphic gaps are discussed in details in order to establish a multidisciplinary stratigraphic correlation through an integrated approach including lithostratigraphy, biostratigraphy, radiometric dating, chemostratigraphy and magnetostratigraphy. Being internationally accepted, the Ordovician System is now subdivided into three series and seven stages, in ascending order, Lower(Tremadocian, Floian), Middle(Dapingian, Darriwilian) and Upper series(Sandbian, Katian,Hirnantian). Three of the seven "Golden Spikes" defining the bases of the Ordovician stages, which were established in 1997–2007, are located in China. As a regionally applied chronostratigraphy, the Ordovician System was subdivided in China into Lower(Xinchangian, Yiyangian), Middle(Dapingian, Darriwilian) and Upper series(Neichiashanian, Chientangkiangian,Hirnantian). This scheme agrees largely with the standard international classification, which can actually be directly applied to China, except for some special circumstances where the Neichiashanian and Chientangkiangian stages of the Upper Ordovician are used. Based on the new studies in recent years and distinctions and differences recognized in the development of the Ordovician System in the constituent terranes of China, a new framework for correlation among the major Chinese palaeoplates or terranes, e.g. South China, North China(including Tarim and Qaidam) and Xizang(Tibet)-western Yunnan, has been established. However, it has been recognized herein that uncertainties still remain on defining the base of the Tremadocian,Dapingian and Katian, and on the correlation between different mega-facies. More specifically, for the Tremadocian, the precise correlation of its base will depend on the better-defined conodont taxonomy, while for the Dapingian and Katian, on the correlation between different mega-facies. It is worthwhile to note that the chemostratigraphic studies of the Ordovician System in China produced the carbonate δ13 C curves for the Darriwilian(Middle Ordovician) and Katian(Upper Ordovician), which show significant differences from the composite global curve. Record of the Ordovician isotopic dating is relatively rare in China, with only three reliable ages from zircons that are all from the upper Katian to Hirnantian of the Upper Ordovician.Abundant bentonite beds in the Upper Ordovician of South China will also provide unique opportunities to advance the isotopic dating and related researches. Studies on the Ordovician magnetostratigraphy need to be significantly enhanced in China, as currently all the available results are restricted to the Lower Ordovician of North China, although they can be correlated with those known from other parts of the world. The analysis of the durational unevenness of the seven stages in the Ordovician supports the possibility to further subdivide the long-durational Tremadocian, Darriwilian and Katian stages, each into two substages.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB26000000)the National Natural Science Foundation of China (Grant Nos. U1562213 and 41502025)the National Science and Technology Major Project of China (Grant No. 2017ZX05035002-001)
文摘Stratigraphic hiatuses of variable time intervals within the Rhuddanian to early Aeronian (Llandovery, Silurian) are identified in the area bordering East Chongqing, West Hubei and Northwest Hunan in central China. Their distribution suggested the existence of a local uplift, traditionally named the Yichang Uplift. The diachronous nature of the basal black shale of the Lungmachi Formation crossing different belts of this Uplift signifies the various developing stages during the uplifting process. The present paper defines the temporal and spatial distribution pattern of the Yichang Uplift, which might be one of the important controlling factors for the preservation and distribution of the shale gas in this region, as it has been demonstrated that the shale gas exploration is generally less promising in the areas where more of the basal part of the Lungmachi Formation is missing. Therefore, better understanding of the circumjacent distribution pattern developed throughout the uplifting process may provide the important guidance for the shale gas exploration. The present work is a sister study to the published paper, "Stage-progressive distribution pattern of the Lungrnachian black graplolitic shales from Guizhou to Chongqing, Central China". These two studies thus provide a complete Ordovician-Silurian black shale distribution pattern in the Middle and Upper Yangtze, a region with the major shale gas fields in China.
文摘The biological activated carbon (BAC) is a popular advanced water treatment to the provision of safe water supply. A bench-scale device was designed to gain a better insight into microbial diversity and community structure of BAC biofilm by using high-throughput sequencing method. Both samples of BAC biofilm (the first, third and fifth month) and water (inlet water and outlet water of carbon filter, outlet water of backwashing) were analyzed to evaluate the impact of carbon filter depth, running time and backwash process. The results showed that the microbial diversity of biofilm decreased generally with the increase of carbon filter depth and biofilm reached a steady-state at the top layer of BAC after three months' running. Proteobacteria (71.02%-95.61%) was found to be dominant bacteria both in biofilms and water samples. As one of opportunistic pathogen, the Pseudomonas aeruginosa in the outlet water of device (1.20%) was about eight times higher than that in the inlet water of device (0.16%) at the genus level after five-month operation. To maintain the safety of drinking water, the backwash used in this test could significantly remove Sphingobacteria (from 8.69% to 5.09%, p < 0.05) of carbon biofilm. After backwashing, the operational taxonomic units (OTUs) number and the Shannon index decreased significantly (p <0.05) at the bottom of carbon column and we found the Proteobacteria increased by about 10% in all biofilm samples from different filter depth. This study reveals the transformation of BAC biofilm with the impact of running time and backwashing.
文摘Bacterial community in the drinking water distribution system (DWDS) was regulated by multiple environmental factors, many of which varied as a function of water age. In this study, four water samples with different water ages, including finished water (FW, 0 d) and tap water (TW) [TWI (1 d), TW2(2 d) and TW3(3 d)], were collected along with the mains of a practical DWDS, and the bacterial community was investigated by high-throughput sequencing technique. Results indicated that the residual chlorine declined with the increase of water age, accompanied by the increase of dissolved organic matter, total bacteria counts and bacterial diversity (Shannon). For bacterial community composition, although Proteobacteria phylum (84.12%-97.6%) and Alphaproteobacteria class (67.42c/,~93.09%) kept dominate, an evident regular was observed at the order level. In detail, the relative abundance of most of other residual orders increased with different degrees from the start to the end of the DWDS, while a downward trend was uniquely observed in terms of Rhizobiales, who was inferred to be chlorine-resistant and be helpful for inhibiting pipes corrosion. Moreover, some OTUs were found to be closely related with species possessing pathogenicity and chlorine-resistant ability, so it was recommended that the use of agents other than chlorine or agents that can act synergically with chlorine should be developed for drinking water disinfection. This paper revealed bacterial community variations along the mains of the DWDS and the result was helpful for understanding bacterial ecology in the DWDS.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University of China (IRT13007)the National S&T Major Project “China Mega-Project for Infectious Disease” (2011ZX10004-001, 2014ZX10004001) from China+1 种基金the National Natural Science Foundation of China (81501773)the PUMC Youth Fund and Fundamental Research Funds for the Central Universities (3332015095, 3332015006)
文摘Coronaviruses, such as severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus, pose significant public health threats. Bats have been suggested to act as natural reservoirs for both these viruses, and periodic monitoring of coronaviruses in bats may thus provide important clues about emergent infectious viruses. The Eastern bent-wing bat Miniopterus fuliginosus is distributed extensively throughout China. We therefore analyzed the genetic diversity of coronaviruses in samples of M. fuliginosus collected from nine Chinese provinces during 2011–2013. The only coronavirus genus found was Alphacoronavirus. We established six complete and five partial genomic sequences of alphacoronaviruses, which revealed that they could be divided into two distinct lineages, with close relationships to coronaviruses in Miniopterus magnater and Miniopterus pusillus. Recombination was confirmed by detecting putative breakpoints of Lineage 1 coronaviruses in M. fuliginosus and M. pusillus(Wu et al., 2015), which supported the results of topological and phylogenetic analyses. The established alphacoronavirus genome sequences showed high similarity to other alphacoronaviruses found in other Miniopterus species, suggesting that their transmission in different Miniopterus species may provide opportunities for recombination with different alphacoronaviruses. The genetic information for these novel alphacoronaviruses will improve our understanding of the evolution and genetic diversity of coronaviruses, with potentially important implications for the transmission of human diseases.
基金supported by the National Natural Science Foundation of China(91743203,21825403,and 21677153)The Thousand Talents Plan for Young Professionals,Chinathe support of the Sanming Project of Medicine in Shenzhen(No.SZSM201811070).
文摘The coronavirus disease 2019(COVID-19)epidemic has become a global public health emergency over last months.As of September 14th,over 28,000,000 confirmed cases and 917,000 deaths have been reported from all over the world.1 Its large-scale outbreak and pandemic cause an extreme shortage of personal protective equipment(PPE)andmedical supplies such as face masks,testing kits,nasopharyngeal swabs,and medical ventilators in the early stage,which consequently leads to the collapse of local medical systems.2 It turns out that measures like lockdown and travel bans are themost effective strategies in response to an epidemic at an early stage with insufficient knowledge.3 However,those physical isolation measures will inevitably result in work stoppages and have a great impact on industrial production.The supply of raw materials and components,and the production and transportation of final products are greatly restricted under a global supply chain.4 This further aggravates the shortage of anti-epidemic supplies and so the vicious cycle begins.