Digital forensics aims to uncover evidence of cybercrimes within compromised systems.These cybercrimes are often perpetrated through the deployment of malware,which inevitably leaves discernible traces within the comp...Digital forensics aims to uncover evidence of cybercrimes within compromised systems.These cybercrimes are often perpetrated through the deployment of malware,which inevitably leaves discernible traces within the compromised systems.Forensic analysts are tasked with extracting and subsequently analyzing data,termed as artifacts,from these systems to gather evidence.Therefore,forensic analysts must sift through extensive datasets to isolate pertinent evidence.However,manually identifying suspicious traces among numerous artifacts is time-consuming and labor-intensive.Previous studies addressed such inefficiencies by integrating artificial intelligence(AI)technologies into digital forensics.Despite the efforts in previous studies,artifacts were analyzed without considering the nature of the data within them and failed to prove their efficiency through specific evaluations.In this study,we propose a system to prioritize suspicious artifacts from compromised systems infected with malware to facilitate efficient digital forensics.Our system introduces a double-checking method that recognizes the nature of data within target artifacts and employs algorithms ideal for anomaly detection.The key ideas of this method are:(1)prioritize suspicious artifacts and filter remaining artifacts using autoencoder and(2)further prioritize suspicious artifacts and filter remaining artifacts using logarithmic entropy.Our evaluation demonstrates that our system can identify malicious artifacts with high accuracy and that its double-checking method is more efficient than alternative approaches.Our system can significantly reduce the time required for forensic analysis and serve as a reference for future studies.展开更多
A significant amount of evidence indicates that microRNAs (miRNAs) play an important role in drug addiction. The nucleus accumbens (NAc) is a critical part of the brain’s reward circuit and is involved in a varie...A significant amount of evidence indicates that microRNAs (miRNAs) play an important role in drug addiction. The nucleus accumbens (NAc) is a critical part of the brain’s reward circuit and is involved in a variety of psychiatric disorders, including depression, anxiety, and drug addiction. However, few studies have examined the expression of miRNAs and their functional roles in the NAc under conditions of morphine addiction. In this study, mice were intravenously infused with morphine (0.01, 0.03, 0.3, 1 and 3 mg/kg/infusion) and showed inverted U-shaped response. After morphine self-administration, NAc was used to analyze the functional networks of altered miRNAs and their putative target mRNAs in the NAc following intravenous self-administration of morphine. We utilized several bioinformatics tools, including Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway mapping and CyTargetLinker. We found that 62 miRNAs were altered and exhibited differential expression patterns. The putative targets were related to diverse regulatory functions, such as neurogenesis, neurodegeneration, and synaptic plasticity, as well as the pharmacological effects of morphine (receptor internalization/endocytosis). The present findings provide novel insights into the regulatory mechanisms of accumbal molecules under conditions of morphine addiction and identify several novel biomarkers associated with morphine addiction.展开更多
Methotrexate, which is used to treat many malignancies and autoimmune diseases, affects brain functions including hippocampal-dependent memory function. However, the precise mechanisms underlying methotrexate-induced ...Methotrexate, which is used to treat many malignancies and autoimmune diseases, affects brain functions including hippocampal-dependent memory function. However, the precise mechanisms underlying methotrexate-induced hippocampal dysfunction are poorly understood. To evaluate temporal changes in synaptic plasticity-related signals, the expression and activity of N-methyI-D-aspartic acid receptor 1, calcium/calmodulin-dependent protein kinase II, extracellular signal-regulated kinase 1/2, cAMP responsive element-binding protein, glutamate receptor 1, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor were examined in the hippocampi of adult C57BL/6 mice after methotrexate (40 mg/kg) intraperitoneal injection. Western blot analysis showed biphasic changes in synaptic plasticity-related signals in adult hippocampi following methotrexate treatment. N-methyI-D-aspartic acid receptor 1, calcium/calmodulin-dependent protein kinase II, and glutamate receptor 1 were acutely activated during the early phase (1 day post-injection), while extracellular signal-regulated kinase 1/2 and cAMP responsive element-binding protein activation showed biphasic increases during the eady (1 day post-injection) and late phases (7-14 days post-injection). Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression increased significantly during the late phase (7-14 days post-injection). Therefore, methotrexate treatment affects synaptic plasticity-related signals in the adult mouse hippocampus, suggesting that changes in synaptic plasticity-related signals may be associated with neuronal survival and plasticity-related cellular remodeling.展开更多
Internet of things(IoT)devices are being increasingly used in numerous areas.However,the low priority on security and various IoT types have made these devices vulnerable to attacks.To prevent this,recent studies have...Internet of things(IoT)devices are being increasingly used in numerous areas.However,the low priority on security and various IoT types have made these devices vulnerable to attacks.To prevent this,recent studies have analyzed firmware in an emulation environment that does not require actual devices and is efficient for repeated experiments.However,these studies focused only on major firmware architectures and rarely considered exotic firmware.In addition,because of the diversity of firmware,the emulation success rate is not high in terms of large-scale analyses.In this study,we propose the adaptive emulation framework for multi-architecture(AEMA).In the field of automated emulation frameworks for IoT firmware testing,AEMA considers the following issues:(1)limited compatibility for exotic firmware architectures,(2)emulation instability when configuring an automated environment,and(3)shallow testing range resulting from structured inputs.To tackle these problems,AEMAcan emulate not onlymajor firmware architectures but also exotic firmware architectures not previously considered,such as Xtensa,ColdFire,and reduced instruction set computer(RISC)version five,by implementing a minority emulator.Moreover,we applied the emulation arbitration technique and input keyword extraction technique for emulation stability and efficient test case generation.We compared AEMA with other existing frameworks in terms of emulation success rates and fuzz testing.As a result,AEMA succeeded in emulating 864 out of 1,083 overall experimental firmware and detected vulnerabilities at least twice as fast as the experimental group.Furthermore,AEMAfound a 0-day vulnerability in realworld IoT devices within 24 h.展开更多
Adaptive multicolor filters have emerged as key components for ensuring color accuracy and resolution in outdoor visual devices.However,the current state of this technology is still in its infancy and largely reliant ...Adaptive multicolor filters have emerged as key components for ensuring color accuracy and resolution in outdoor visual devices.However,the current state of this technology is still in its infancy and largely reliant on liquid crystal devices that require high voltage and bulky structural designs.Here,we present a multicolor nanofilter consisting of multilayered‘active’plasmonic nanocomposites,wherein metallic nanoparticles are embedded within a conductive polymer nanofilm.These nanocomposites are fabricated with a total thickness below 100 nm using a‘lithography-free’method at the wafer level,and they inherently exhibit three prominent optical modes,accompanying scattering phenomena that produce distinct dichroic reflection and transmission colors.Here,a pivotal achievement is that all these colors are electrically manipulated with an applied external voltage of less than 1 V with 3.5 s of switching speed,encompassing the entire visible spectrum.Furthermore,this electrically programmable multicolor function enables the effective and dynamic modulation of the color temperature of white light across the warm-to-cool spectrum(3250 K-6250 K).This transformative capability is exceptionally valuable for enhancing the performance of outdoor optical devices that are independent of factors such as the sun’s elevation and prevailing weather conditions.展开更多
Abstinence from prolonged psychostimulant use prompts stimulant withdrawal syndrome.Molecular adaptations within the dorsal striatum have been considered the main hallmark of stimulant abstinence. Here we explored str...Abstinence from prolonged psychostimulant use prompts stimulant withdrawal syndrome.Molecular adaptations within the dorsal striatum have been considered the main hallmark of stimulant abstinence. Here we explored striatal miRNA-target interaction and its impact on circulating miRNA marker as well as behavioral dysfunctions in methamphetamine(MA) abstinence. We conducted miRNA sequencing and profiling in the nonhuman primate model of MA abstinence, followed by miRNA qPCR,LC-MS/MS proteomics, immunoassays, and behavior tests in mice. In nonhuman primates, MA abstinence triggered a lasting upregulation of miR-137 in the dorsal striatum but a simultaneous downregulation of circulating miR-137. In mice, aberrant increase in striatal miR-137-dependent inhibition of SYNCRIP essentially mediated the MA abstinence-induced reduction of circulating miR-137. Pathway modeling through experimental deduction illustrated that the MA abstinence-mediated downregulation of circulating miR-137 was caused by reduction of SYNCRIP-dependent miRNA sorting into the exosomes in the dorsal striatum. Furthermore, diminished SYNCRIP in the dorsal striatum was necessary for MA abstinence-induced behavioral bias towards egocentric spatial learning. Taken together, our data revealed circulating miR-137 as a potential blood-based marker that could reflect MA abstinence-dependent changes in striatal miR-137/SYNCRIP axis, and striatal SYNCRIP as a potential therapeutic target for striatum-associated cognitive dysfunction by MA withdrawal syndrome.展开更多
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2024-RS-2024-00437494)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation).
文摘Digital forensics aims to uncover evidence of cybercrimes within compromised systems.These cybercrimes are often perpetrated through the deployment of malware,which inevitably leaves discernible traces within the compromised systems.Forensic analysts are tasked with extracting and subsequently analyzing data,termed as artifacts,from these systems to gather evidence.Therefore,forensic analysts must sift through extensive datasets to isolate pertinent evidence.However,manually identifying suspicious traces among numerous artifacts is time-consuming and labor-intensive.Previous studies addressed such inefficiencies by integrating artificial intelligence(AI)technologies into digital forensics.Despite the efforts in previous studies,artifacts were analyzed without considering the nature of the data within them and failed to prove their efficiency through specific evaluations.In this study,we propose a system to prioritize suspicious artifacts from compromised systems infected with malware to facilitate efficient digital forensics.Our system introduces a double-checking method that recognizes the nature of data within target artifacts and employs algorithms ideal for anomaly detection.The key ideas of this method are:(1)prioritize suspicious artifacts and filter remaining artifacts using autoencoder and(2)further prioritize suspicious artifacts and filter remaining artifacts using logarithmic entropy.Our evaluation demonstrates that our system can identify malicious artifacts with high accuracy and that its double-checking method is more efficient than alternative approaches.Our system can significantly reduce the time required for forensic analysis and serve as a reference for future studies.
基金funded by the National Research Council of Science & Technology(NST)grant by the Korean government(MSIP)(No.CRC-15-04-KIST)the National Research Foundation of Korea under the grant(No.NRF-2017R1A2B200399Mid-career Researcher Program)
文摘A significant amount of evidence indicates that microRNAs (miRNAs) play an important role in drug addiction. The nucleus accumbens (NAc) is a critical part of the brain’s reward circuit and is involved in a variety of psychiatric disorders, including depression, anxiety, and drug addiction. However, few studies have examined the expression of miRNAs and their functional roles in the NAc under conditions of morphine addiction. In this study, mice were intravenously infused with morphine (0.01, 0.03, 0.3, 1 and 3 mg/kg/infusion) and showed inverted U-shaped response. After morphine self-administration, NAc was used to analyze the functional networks of altered miRNAs and their putative target mRNAs in the NAc following intravenous self-administration of morphine. We utilized several bioinformatics tools, including Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway mapping and CyTargetLinker. We found that 62 miRNAs were altered and exhibited differential expression patterns. The putative targets were related to diverse regulatory functions, such as neurogenesis, neurodegeneration, and synaptic plasticity, as well as the pharmacological effects of morphine (receptor internalization/endocytosis). The present findings provide novel insights into the regulatory mechanisms of accumbal molecules under conditions of morphine addiction and identify several novel biomarkers associated with morphine addiction.
基金supported by the National Research Foundation of Korea Grant funded by the Korean Government(No. NRF-2010-0015393)supported by Animal Medical Institute of Chonnam Na-tional University
文摘Methotrexate, which is used to treat many malignancies and autoimmune diseases, affects brain functions including hippocampal-dependent memory function. However, the precise mechanisms underlying methotrexate-induced hippocampal dysfunction are poorly understood. To evaluate temporal changes in synaptic plasticity-related signals, the expression and activity of N-methyI-D-aspartic acid receptor 1, calcium/calmodulin-dependent protein kinase II, extracellular signal-regulated kinase 1/2, cAMP responsive element-binding protein, glutamate receptor 1, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor were examined in the hippocampi of adult C57BL/6 mice after methotrexate (40 mg/kg) intraperitoneal injection. Western blot analysis showed biphasic changes in synaptic plasticity-related signals in adult hippocampi following methotrexate treatment. N-methyI-D-aspartic acid receptor 1, calcium/calmodulin-dependent protein kinase II, and glutamate receptor 1 were acutely activated during the early phase (1 day post-injection), while extracellular signal-regulated kinase 1/2 and cAMP responsive element-binding protein activation showed biphasic increases during the eady (1 day post-injection) and late phases (7-14 days post-injection). Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression increased significantly during the late phase (7-14 days post-injection). Therefore, methotrexate treatment affects synaptic plasticity-related signals in the adult mouse hippocampus, suggesting that changes in synaptic plasticity-related signals may be associated with neuronal survival and plasticity-related cellular remodeling.
基金This work was supported by the Ministry of Science and ICT(MSIT)Korea,under the Information Technology Research Center(ITRC)support program(IITP-2022-2018-0-01423)+2 种基金supervised by the Institute for Information&Communications Technology Planning&Evaluation(IITP)by MSIT,Korea under the ITRC support program(IITP-2021-2020-0-01602)supervised by the IITP.
文摘Internet of things(IoT)devices are being increasingly used in numerous areas.However,the low priority on security and various IoT types have made these devices vulnerable to attacks.To prevent this,recent studies have analyzed firmware in an emulation environment that does not require actual devices and is efficient for repeated experiments.However,these studies focused only on major firmware architectures and rarely considered exotic firmware.In addition,because of the diversity of firmware,the emulation success rate is not high in terms of large-scale analyses.In this study,we propose the adaptive emulation framework for multi-architecture(AEMA).In the field of automated emulation frameworks for IoT firmware testing,AEMA considers the following issues:(1)limited compatibility for exotic firmware architectures,(2)emulation instability when configuring an automated environment,and(3)shallow testing range resulting from structured inputs.To tackle these problems,AEMAcan emulate not onlymajor firmware architectures but also exotic firmware architectures not previously considered,such as Xtensa,ColdFire,and reduced instruction set computer(RISC)version five,by implementing a minority emulator.Moreover,we applied the emulation arbitration technique and input keyword extraction technique for emulation stability and efficient test case generation.We compared AEMA with other existing frameworks in terms of emulation success rates and fuzz testing.As a result,AEMA succeeded in emulating 864 out of 1,083 overall experimental firmware and detected vulnerabilities at least twice as fast as the experimental group.Furthermore,AEMAfound a 0-day vulnerability in realworld IoT devices within 24 h.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.NRF-2022M3C1A3081312).
文摘Adaptive multicolor filters have emerged as key components for ensuring color accuracy and resolution in outdoor visual devices.However,the current state of this technology is still in its infancy and largely reliant on liquid crystal devices that require high voltage and bulky structural designs.Here,we present a multicolor nanofilter consisting of multilayered‘active’plasmonic nanocomposites,wherein metallic nanoparticles are embedded within a conductive polymer nanofilm.These nanocomposites are fabricated with a total thickness below 100 nm using a‘lithography-free’method at the wafer level,and they inherently exhibit three prominent optical modes,accompanying scattering phenomena that produce distinct dichroic reflection and transmission colors.Here,a pivotal achievement is that all these colors are electrically manipulated with an applied external voltage of less than 1 V with 3.5 s of switching speed,encompassing the entire visible spectrum.Furthermore,this electrically programmable multicolor function enables the effective and dynamic modulation of the color temperature of white light across the warm-to-cool spectrum(3250 K-6250 K).This transformative capability is exceptionally valuable for enhancing the performance of outdoor optical devices that are independent of factors such as the sun’s elevation and prevailing weather conditions.
基金funded by Korea Institute of Science and Technology Intramural Funding (2E26640,2E30952Republic of Korea)+7 种基金National Research Council of Science & Technology (NST) grant by Korean government (MSIP) (CRC-15-04-KISTRepublic of Korea)Center for Women In Science,Engineering,and Technology (WISET) grant by Korean government (WISET2020-525Republic of Korea)National Research Foundation of Korea (2017R1A2B2003993,2020R1A2C2004610Republic of Korea)UST Young Scientist Research Program through Korea University of Science and Technology (UST) (2017YS03Republic of Korea)。
文摘Abstinence from prolonged psychostimulant use prompts stimulant withdrawal syndrome.Molecular adaptations within the dorsal striatum have been considered the main hallmark of stimulant abstinence. Here we explored striatal miRNA-target interaction and its impact on circulating miRNA marker as well as behavioral dysfunctions in methamphetamine(MA) abstinence. We conducted miRNA sequencing and profiling in the nonhuman primate model of MA abstinence, followed by miRNA qPCR,LC-MS/MS proteomics, immunoassays, and behavior tests in mice. In nonhuman primates, MA abstinence triggered a lasting upregulation of miR-137 in the dorsal striatum but a simultaneous downregulation of circulating miR-137. In mice, aberrant increase in striatal miR-137-dependent inhibition of SYNCRIP essentially mediated the MA abstinence-induced reduction of circulating miR-137. Pathway modeling through experimental deduction illustrated that the MA abstinence-mediated downregulation of circulating miR-137 was caused by reduction of SYNCRIP-dependent miRNA sorting into the exosomes in the dorsal striatum. Furthermore, diminished SYNCRIP in the dorsal striatum was necessary for MA abstinence-induced behavioral bias towards egocentric spatial learning. Taken together, our data revealed circulating miR-137 as a potential blood-based marker that could reflect MA abstinence-dependent changes in striatal miR-137/SYNCRIP axis, and striatal SYNCRIP as a potential therapeutic target for striatum-associated cognitive dysfunction by MA withdrawal syndrome.