Given the enhanced channel capacity of wave chirality,acoustic communications based on the orbital angular momentum(OAM)of acoustic-vortex(AV)beams are of significant interest for underwater data transmissions.However...Given the enhanced channel capacity of wave chirality,acoustic communications based on the orbital angular momentum(OAM)of acoustic-vortex(AV)beams are of significant interest for underwater data transmissions.However,the stringent beam alignment is required for the coaxial arrangement of transceiver arrays to ensure the accuracy and reliability of OAM decoding.To avoid the required multiple measurements of the traditional orthogonality based algorithm,the beam alignment algorithm based on the OAM spectrum decomposition is proposed for AV communications by using simplified ring-arrays.Numerical studies of the single-OAM and OAM-multiplexed AV beams show that the error of the OAM spectrum increases with the translation distance and the deflection angle of the transceiver arrays.To achieve an ideal arrangement,two methods of the single-array translation alignment and the dual-array deflection alignment are developed based on the least standard deviation of the OAM spectrum(SD-OAM).By decreasing the SD-OAM towards zero using transceiver arrays of 16 transmitters and 16 receivers,accurate beam alignments are accomplished by multiple adjustments in three dimensions.The proposed method is also demonstrated by experimental measurements of the OAM dispersion and the SD-OAM for misaligned beams.The results demonstrate the feasibility of the rapid beam alignment based on the OAM spectrum decomposition by using simplified transceiver ring-arrays,and suggest more application potentials for acoustic communications.展开更多
Theoretical studies on the multi-bubble interaction are crucial for the in-depth understanding of the mechanism behind the applications of ultrasound contrast agents (UCAs) in clinics. A two-dimensional (2D) axisy...Theoretical studies on the multi-bubble interaction are crucial for the in-depth understanding of the mechanism behind the applications of ultrasound contrast agents (UCAs) in clinics. A two-dimensional (2D) axisymmetric finite element model (FEM) is developed here to investigate the bubble-bubble interactions for UCAs in a fluidic environment. The effect of the driving frequency and the bubble size on the bubble interaction tendency (viz., bubbles' attraction and repulsion), as well as the influences of bubble shell mechanical parameters (viz., surface tension coefficient and viscosity coefficient) are discussed. Based on FEM simulations, the temporal evolution of the bubbles' radii, the bubble-bubble distance, and the distribution of the velocity field in the surrounding fluid are investigated in detail. The results suggest that for the interacting bubble-bubble couple, the overall translational tendency should be determined by the relationship between the driving frequency and their resonance frequencies. When the driving frequency falls between the resonance frequencies of two bubbles with different sizes, they will repel each other, otherwise they will attract each other. For constant acoustic driving parameters used in this paper, the changing rate of the bubble radius decreases as the viscosity coefficient increases, and increases first then decreases as the bubble shell surface tension coefficient increases, which means that the strength of bubble-bubble interaction could be adjusted by changing the bubble shell visco-elasticity coefficients. The current work should provide a powerful explanation for the accumulation observations in an experiment, and provide a fundamental theoretical support for the applications of UCAs in clinics.展开更多
This study investigated dissolution processes of cavitation bubbles generated during in vivo shock wave(SW)-induced treatments. Both active cavitation detection(ACD) and the B-mode imaging technique were applied t...This study investigated dissolution processes of cavitation bubbles generated during in vivo shock wave(SW)-induced treatments. Both active cavitation detection(ACD) and the B-mode imaging technique were applied to measure the dissolution procedure of bi Spheres contrast agent bubbles by in vitro experiments. Besides, the simulation of SW-induced cavitation bubbles dissolution behaviors detected by the B-mode imaging system during in vivo SW treatments, including extracorporeal shock wave lithotripsy(ESWL) and extracorporeal shock wave therapy(ESWT), were carried out based on calculating the integrated scattering cross-section of dissolving gas bubbles with employing gas bubble dissolution equations and Gaussian bubble size distribution. The results showed that(i) B-mode imaging technology is an effective tool to monitor the temporal evolution of cavitation bubbles dissolution procedures after the SW pulses ceased, which is important for evaluation and controlling the cavitation activity generated during subsequent SW treatments within a treatment period;(ii) the characteristics of the bubbles, such as the bubble size distribution and gas diffusion, can be estimated by simulating the experimental data properly.展开更多
As human‐machine interaction(HMI)in healthcare continues to evolve,the issue of trust in HMI in healthcare has been raised and explored.It is critical for the development and safety of healthcare that humans have pro...As human‐machine interaction(HMI)in healthcare continues to evolve,the issue of trust in HMI in healthcare has been raised and explored.It is critical for the development and safety of healthcare that humans have proper trust in medical machines.Intelligent machines that have applied machine learning(ML)technologies continue to penetrate deeper into the medical environment,which also places higher demands on intelligent healthcare.In order to make machines play a role in HMI in healthcare more effectively and make human‐machine cooperation more harmonious,the authors need to build good humanmachine trust(HMT)in healthcare.This article provides a systematic overview of the prominent research on ML and HMT in healthcare.In addition,this study explores and analyses ML and three important factors that influence HMT in healthcare,and then proposes a HMT model in healthcare.Finally,general trends are summarised and issues to consider addressing in future research on HMT in healthcare are identified.展开更多
By combining magnetics, acoustics and electrics, the magneto-acoustic-electrical tomography(MAET) proves to possess the capability of differentiating electrical impedance variation and thus improving the spatial res...By combining magnetics, acoustics and electrics, the magneto-acoustic-electrical tomography(MAET) proves to possess the capability of differentiating electrical impedance variation and thus improving the spatial resolution. However,the signal-to-noise ratio(SNR) of the collected MAET signal is still unsatisfactory for biological tissues with low-level electrical conductivity. In this study, the formula of MAET measurement with sinusoid-Barker coded excitation is derived and simplified for a planar piston transducer. Numerical simulations are conducted for a four-layered gel phantom with the 13-bit sinusoid-Barker coded excitation, and the performances of wave packet recovery with side-lobe suppression are improved by using the mismatched compression filter, which is also demonstrated by experimentally measuring a three-layered gel phantom. It is demonstrated that comparing with the single-cycle sinusoidal excitation, the amplitude of the driving signal can be reduced greatly with an SNR enhancement of 10 dB using the 13-bit sinusoid-Barker coded excitation. The amplitude and polarity of the wave packet filtered from the collected MAET signal can be used to achieve the conductivity derivative at the tissue boundary. In this study, we apply the sinusoid-Barker coded modulation method and the mismatched suppression scheme to MAET measurement to ensure the safety for biological tissues with improved SNR and spatial resolution, and suggest the potential applications in biomedical imaging.展开更多
Due to the unique magnetic, mechanical and thermal properties, magnetic nanoparticles(MNPs) have comprehensive applications as the contrast and therapeutic agents in biomedical imaging and magnetic hyperthermia. The l...Due to the unique magnetic, mechanical and thermal properties, magnetic nanoparticles(MNPs) have comprehensive applications as the contrast and therapeutic agents in biomedical imaging and magnetic hyperthermia. The linear and nonlinear magnetoacoustic responses determined by the magnetic properties of MNPs have attracted more and more attention in biomedical engineering. By considering the relaxation time of MNPs, we derive the formulae of second harmonic magnetoacoustic responses(2H-MARs) for a cylindrical MNP solution model based on the mechanical oscillations of MNPs in magnetoacoustic tomography with magnetic induction(MAT-MI). It is proved that only the second harmonic magnetoacoustic oscillations can be generated by MNPs under an alternating magnetic excitation. The acoustic pressure of the 2H-MAR is proportional to the square of the magnetic field intensity and exhibits a linear increase with the concentration of MNPs. Numerical simulations of the 2H-MAR are confirmed by the experimental measurements for various magnetic field intensities and solution concentrations using a laser vibrometer. The favorable results demonstrate the feasibility of the harmonic measurements without the fundamental interference of the electromagnetic excitation, and suggest a new harmonic imaging strategy of MAT-MI for MNPs with enhanced spatial resolution and improved signal-to-noise ratio in biomedical applications.展开更多
Chronic infammation and nutritional imbalance are impor-tant comorbid conditions that correlate with poor clinical outcomes in children with chronic kidney disease (CKD). Nutritional disorders such as cachexia/prote...Chronic infammation and nutritional imbalance are impor-tant comorbid conditions that correlate with poor clinical outcomes in children with chronic kidney disease (CKD). Nutritional disorders such as cachexia/protein energy wasting, obesity and growth retardation negatively impact the quality of life and disease progression in children with CKD. Inadequate nutrition has been asso-ciated with growth disturbances in children with CKD. On the other hand, over-nutrition and obesity are associated with poor outcomes in children with CKD. The exact mechanisms leading to these unfavorable conditions are not fully elucidated and are most likely multifactorial. In this review, we focus on the pathophysiology of nutrition disorders and infammation and their impact on clinical outcomes in children with CKD.展开更多
The influence of the inhomogeneous tissue layer on the generation of acoustic vortices (AV) is studied theoretically and experimentally based on the phase screen model. By considering the time-shift of a random phas...The influence of the inhomogeneous tissue layer on the generation of acoustic vortices (AV) is studied theoretically and experimentally based on the phase screen model. By considering the time-shift of a random phase screen, the formula of acoustic pressure for the AV beam generated by a circular array of eight planar piston sources is derived. With the actual correlation length of the abdominal wall, numerical simulations before and after the insertion of the inhomogeneous tissue layer are conducted, and also demonstrated by experimental measurements. It is proved that, when the thickness variation of the phase screen is less than one wavelength, no significant influence on the generation of AVs can be produced. The variations of vortex nodes and antinodes in terms of the location, shape, and size of AVs are not obvious. Although the circular pressure distribution might be deformed by the phase interference with a larger thickness variation, AVs can still be generated around the center axis with perfect phase spirals in a reduced effective radius. The favorable results provide the feasibility of AV generation inside the human body and suggest the application potential of AVs in object manipulation for biomedical engineering.展开更多
Sonoporation,or the use of ultrasound in the presence of cavitation nuclei to induce plasma membrane perforation,is well considered as an emerging physical approach to facilitate the delivery of drugs and genes to liv...Sonoporation,or the use of ultrasound in the presence of cavitation nuclei to induce plasma membrane perforation,is well considered as an emerging physical approach to facilitate the delivery of drugs and genes to living cells.Nevertheless,this emerging drug delivery paradigm has not yet reached widespread clinical use,because the efficiency of sonoporation is often deemed to be mediocre due to the lack of detailed understanding of the pertinent scientific mechanisms.Here,we summarize the current observational evidence available on the notion of sonoporation,and we discuss the prevailing understanding of the physical and biological processes related to sonoporation.To facilitate systematic understanding,we also present how the extent of sonoporation is dependent on a multitude of factors related to acoustic excitation parameters(ultrasound frequency,pressure,cavitation dose,exposure time),microbubble parameters(size,concentration,bubble-to-cell distance,shell composition),and cellular properties(cell type,cell cycle,biochemical contents).By adopting a science-backed approach to the realization of sonoporation,ultrasound-mediated drug delivery can be more controllably achieved to viably enhance drug uptake into living cells with high sonoporation efficiency.This drug delivery approach,when coupled with concurrent advances in ultrasound imaging,has potential to become an effective therapeutic paradigm.展开更多
Contactless manipulation of multi-scale objects using the acoustic vortex(AV) tweezers offers tremendous perspectives in biomedical applications.However,it is still hindered by the weak acoustic radiation force(ARF) a...Contactless manipulation of multi-scale objects using the acoustic vortex(AV) tweezers offers tremendous perspectives in biomedical applications.However,it is still hindered by the weak acoustic radiation force(ARF) and torque(ART)around the vortex center.By introducing the elevation angle to the planar transducers of an N-element ring array,the weakfocused acoustic vortex(WFAV) composed of a main-AV and N paraxial-AVs is constructed to conduct a large-scale object manipulation.Different from the traditional focused AV(FAV) generated by a ring array of concave spherical transducers,a much larger focal region of the WFAV is generated by the main lobes of the planar transducers with the size inversely associated with the elevation angle.With the pressure simulation of the acoustic field,the capability of the rotational object driving in the focal plane for the WFAV is analyzed using the ARF and the ART exerted on an elastic ball based on acoustic scattering.With the experimental system built in water,the generation of the WFAV is verified by the scanning measurements of the acoustic field and the capability of object manipulation is also analyzed by the rotational trapping of floating particles in the focal plane.The favorable results demonstrate the feasibility of large-scale rotational manipulation of objects with a strengthened ART and a reduced acousto-thermal damage to biological tissues,showing a promising prospect for potential applications in clinical practice.展开更多
To solve the difficulty of generating an ideal Bessel beam,an simplified annular transducer model is proposed to study the axial acoustic radiation force(ARF)and the corresponding negative ARF(pulling force)exerted on...To solve the difficulty of generating an ideal Bessel beam,an simplified annular transducer model is proposed to study the axial acoustic radiation force(ARF)and the corresponding negative ARF(pulling force)exerted on centered elastic spheres for acoustic-vortex(AV)beams of arbitrary orders.Based on the theory of acoustic scattering,the axial distributions of the velocity potential and the ARF for AV beams of different orders generated by the annular transducers with different physical sizes are simulated.It is proved that the pulling force can be generated by AV beams of arbitrary orders with multiple axial regions.The pulling force is more likely to exert on the sphere with a smaller k0a(product of the wave number and the radius)for the AV beam with a bigger topological charge due to the strengthened off-axis acoustic scattering.The pulling force decreases with the increase of the axial distance for the sphere with a bigger k0a.More pulling force areas with wider axial regions can be formed by AV beams using a bigger-sized annular transducer.The theoretical results demonstrate the feasibility of generating the pulling force along the axes of AV beams using the experimentally applicable circular array of planar transducers,and suggest application potentials for multi-position stable object manipulations in biomedical engineering.展开更多
Depression has become one of the most common mental illnesses in the world.For better prediction and diagnosis,methods of automatic depression recognition based on speech signal are constantly proposed and updated,wit...Depression has become one of the most common mental illnesses in the world.For better prediction and diagnosis,methods of automatic depression recognition based on speech signal are constantly proposed and updated,with a transition from the early traditional methods based on hand‐crafted features to the application of architectures of deep learning.This paper systematically and precisely outlines the most prominent and up‐to‐date research of automatic depression recognition by intelligent speech signal processing so far.Furthermore,methods for acoustic feature extraction,algorithms for classification and regression,as well as end to end deep models are investigated and analysed.Finally,general trends are summarised and key unresolved issues are identified to be considered in future studies of automatic speech depression recognition.展开更多
The original version of this article(Zhao et al.,2021)unfortunately contained two mistakes.(1)In p.826,the hematoxylin eosin(HE)staining figure of the fourth panel(the Ang Ⅱ+LIPUS group)in Fig.3a was incorrect.
With unlimited topological modes in mathematics,the fractional orbital angular momentum(FOAM)demonstrates the potential to infinitely increase the channel capacity in acoustic-vortex(AV)communications.However,the accu...With unlimited topological modes in mathematics,the fractional orbital angular momentum(FOAM)demonstrates the potential to infinitely increase the channel capacity in acoustic-vortex(AV)communications.However,the accuracy and stability of FOAM recognition are still limited by the nonorthogonality and poor anti-interference of fractional AV beams.The popular machine learning,widely used in optics based on large datasets of images,does not work in acoustics because of the huge engineering of the 2-dimensional point-by-point measurement.Here,we report a strategy of phase-dislocation-mediated high-dimensional fractional AV communication based on pair-FOAM multiplexing,circular sparse sampling,and machine learning.The unique phase dislocation corresponding to the topological charge provides important physical guidance to recognize FOAMs and reduce sampling points from theory to practice.A straightforward convolutional neural network considering turbulence and misalignment is further constructed to achieve the stable and accurate communication without involving experimental data.We experimentally present that the 32-point dual-ring sampling can realize the 10-bit information transmission in a limited topological charge scope from±0.6 to±2.4 with the FOAM resolution of 0.2,which greatly reduce the divergence in AV communications.The infinitely expanded channel capacity is further verified by the improved FOAM resolution of 0.025.Compared with other milestone works,our strategy reaches 3-fold OAM utilization,4-fold information level,and 5-fold OAM resolution.Because of the extra advantages of high dimension,high speed,and low divergence,this technology may shed light on the next-generation AV communication.展开更多
Objective:Cardiac hypertrophy and fibrosis are major pathological manifestations observed in left ventricular remodeling induced by angiotensin II(AngII).Low-intensity pulsed ultrasound(LIPUS)has been reported to amel...Objective:Cardiac hypertrophy and fibrosis are major pathological manifestations observed in left ventricular remodeling induced by angiotensin II(AngII).Low-intensity pulsed ultrasound(LIPUS)has been reported to ameliorate cardiac dysfunction and myocardial fibrosis in myocardial infarction(MI)through mechano-transduction and its downstream pathways.In this study,we aimed to investigate whether LIPUS could exert a protective effect by ameliorating AngII-induced cardiac hypertrophy and fibrosis and if so,to further elucidate the underlying molecular mechanisms.Methods:We used AngII to mimic animal and cell culture models of cardiac hypertrophy and fibrosis.LIPUS irradiation was applied in vivo for 20 min every 2 d from one week before mini-pump implantation to four weeks after mini-pump implantation,and in vitro for 20 min on each of two occasions 6 h apart.Cardiac hypertrophy and fibrosis levels were then evaluated by echocardiographic,histopathological,and molecular biological methods.Results:Our results showed that LIPUS could ameliorate left ventricular remodeling in vivo and cardiac fibrosis in vitro by reducing AngII-induced release of inflammatory cytokines,but the protective effects on cardiac hypertrophy were limited in vitro.Given that LIPUS increased the expression of caveolin-1 in response to mechanical stimulation,we inhibited caveolin-1 activity with pyrazolopyrimidine 2(pp2)in vivo and in vitro.LIPUS-induced downregulation of inflammation was reversed and the anti-fibrotic effects of LIPUS were absent.Conclusions:These results indicated that LIPUS could ameliorate AngII-induced cardiac fibrosis by alleviating inflammation via a caveolin-1-dependent pathway,providing new insights for the development of novel therapeutic apparatus in clinical practice.展开更多
The process of performance degradation of road asphalt(RA)is regarded as aging.At present,better understanding of the thermal-oxidative aging of asphalt is achieved and the corresponding method to evaluate this proces...The process of performance degradation of road asphalt(RA)is regarded as aging.At present,better understanding of the thermal-oxidative aging of asphalt is achieved and the corresponding method to evaluate this process is developed;meanwhile,photo-oxidative aging(aging in an atmospheric environment,which is referred to as“outdoor aging”in this paper)of asphalt remains at the initial stages of scientific exploration.The outdoor natural ultraviolet(UV)aging of RA and SBS modified asphalt(SBSMA)are investigated in this study.The experimental results show that the basic performances of RA and SBSMA present similar change tendencies.The softening point increased,while the penetration and ductility decreased as the outdoor aging time passed by,and the 5℃ ductility(ductility measured at 5℃)of SBSMA decreased very quickly.The group components of RA and SBSMA also change during UV aging.The content of asphaltene rose and that of aromatics and saturates decreased,while the content of resins changed insignificantly.Moreover,the Fourier transform infrared(FTIR)graphs show that the content of sulfoxide and carbonyl groups in RA and SBSMA increased significantly during the outdoor aging process.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11934009,11974187,and 12174198)
文摘Given the enhanced channel capacity of wave chirality,acoustic communications based on the orbital angular momentum(OAM)of acoustic-vortex(AV)beams are of significant interest for underwater data transmissions.However,the stringent beam alignment is required for the coaxial arrangement of transceiver arrays to ensure the accuracy and reliability of OAM decoding.To avoid the required multiple measurements of the traditional orthogonality based algorithm,the beam alignment algorithm based on the OAM spectrum decomposition is proposed for AV communications by using simplified ring-arrays.Numerical studies of the single-OAM and OAM-multiplexed AV beams show that the error of the OAM spectrum increases with the translation distance and the deflection angle of the transceiver arrays.To achieve an ideal arrangement,two methods of the single-array translation alignment and the dual-array deflection alignment are developed based on the least standard deviation of the OAM spectrum(SD-OAM).By decreasing the SD-OAM towards zero using transceiver arrays of 16 transmitters and 16 receivers,accurate beam alignments are accomplished by multiple adjustments in three dimensions.The proposed method is also demonstrated by experimental measurements of the OAM dispersion and the SD-OAM for misaligned beams.The results demonstrate the feasibility of the rapid beam alignment based on the OAM spectrum decomposition by using simplified transceiver ring-arrays,and suggest more application potentials for acoustic communications.
基金Projects supported by the National Natural Science Foundation of China(Grant Nos.11474161,11474001,116741731,1774166,11774168,81527803,81627802,and 81420108018)the Fundamental Research Funds for the Central Universities,China(Grant No.020414380109)the Qing Lan Project,China
文摘Theoretical studies on the multi-bubble interaction are crucial for the in-depth understanding of the mechanism behind the applications of ultrasound contrast agents (UCAs) in clinics. A two-dimensional (2D) axisymmetric finite element model (FEM) is developed here to investigate the bubble-bubble interactions for UCAs in a fluidic environment. The effect of the driving frequency and the bubble size on the bubble interaction tendency (viz., bubbles' attraction and repulsion), as well as the influences of bubble shell mechanical parameters (viz., surface tension coefficient and viscosity coefficient) are discussed. Based on FEM simulations, the temporal evolution of the bubbles' radii, the bubble-bubble distance, and the distribution of the velocity field in the surrounding fluid are investigated in detail. The results suggest that for the interacting bubble-bubble couple, the overall translational tendency should be determined by the relationship between the driving frequency and their resonance frequencies. When the driving frequency falls between the resonance frequencies of two bubbles with different sizes, they will repel each other, otherwise they will attract each other. For constant acoustic driving parameters used in this paper, the changing rate of the bubble radius decreases as the viscosity coefficient increases, and increases first then decreases as the bubble shell surface tension coefficient increases, which means that the strength of bubble-bubble interaction could be adjusted by changing the bubble shell visco-elasticity coefficients. The current work should provide a powerful explanation for the accumulation observations in an experiment, and provide a fundamental theoretical support for the applications of UCAs in clinics.
基金Project partially supported by the National Natural Science Foundation of China(Grant Nos.81627802,81473692,81673995,11374155,11574156,11474001,11474161,11474166,and 11674173)Natural Science Foundation of Jiangsu Province,China(Grant No.BK20151007)the Qing Lan Project of Jiangsu Province,China
文摘This study investigated dissolution processes of cavitation bubbles generated during in vivo shock wave(SW)-induced treatments. Both active cavitation detection(ACD) and the B-mode imaging technique were applied to measure the dissolution procedure of bi Spheres contrast agent bubbles by in vitro experiments. Besides, the simulation of SW-induced cavitation bubbles dissolution behaviors detected by the B-mode imaging system during in vivo SW treatments, including extracorporeal shock wave lithotripsy(ESWL) and extracorporeal shock wave therapy(ESWT), were carried out based on calculating the integrated scattering cross-section of dissolving gas bubbles with employing gas bubble dissolution equations and Gaussian bubble size distribution. The results showed that(i) B-mode imaging technology is an effective tool to monitor the temporal evolution of cavitation bubbles dissolution procedures after the SW pulses ceased, which is important for evaluation and controlling the cavitation activity generated during subsequent SW treatments within a treatment period;(ii) the characteristics of the bubbles, such as the bubble size distribution and gas diffusion, can be estimated by simulating the experimental data properly.
基金Qinglan Project of Jiangsu Province of China,Grant/Award Number:BK20180820National Natural Science Foundation of China,Grant/Award Numbers:12271255,61701243,71771125,72271126,12227808+2 种基金Major Projects of Natural Sciences of University in Jiangsu Province of China,Grant/Award Numbers:21KJA630001,22KJA630001Postgraduate Research and Practice Innovation Program of Jiangsu Province,Grant/Award Number:KYCX23_2343supported by the National Natural Science Foundation of China(no.72271126,12271255,61701243,71771125,12227808)。
文摘As human‐machine interaction(HMI)in healthcare continues to evolve,the issue of trust in HMI in healthcare has been raised and explored.It is critical for the development and safety of healthcare that humans have proper trust in medical machines.Intelligent machines that have applied machine learning(ML)technologies continue to penetrate deeper into the medical environment,which also places higher demands on intelligent healthcare.In order to make machines play a role in HMI in healthcare more effectively and make human‐machine cooperation more harmonious,the authors need to build good humanmachine trust(HMT)in healthcare.This article provides a systematic overview of the prominent research on ML and HMT in healthcare.In addition,this study explores and analyses ML and three important factors that influence HMT in healthcare,and then proposes a HMT model in healthcare.Finally,general trends are summarised and issues to consider addressing in future research on HMT in healthcare are identified.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474166 and 11604156)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20161013)+2 种基金the Postdoctoral Science Foundation of China(Grant No.2016M591874)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX17 1083)the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions,China
文摘By combining magnetics, acoustics and electrics, the magneto-acoustic-electrical tomography(MAET) proves to possess the capability of differentiating electrical impedance variation and thus improving the spatial resolution. However,the signal-to-noise ratio(SNR) of the collected MAET signal is still unsatisfactory for biological tissues with low-level electrical conductivity. In this study, the formula of MAET measurement with sinusoid-Barker coded excitation is derived and simplified for a planar piston transducer. Numerical simulations are conducted for a four-layered gel phantom with the 13-bit sinusoid-Barker coded excitation, and the performances of wave packet recovery with side-lobe suppression are improved by using the mismatched compression filter, which is also demonstrated by experimentally measuring a three-layered gel phantom. It is demonstrated that comparing with the single-cycle sinusoidal excitation, the amplitude of the driving signal can be reduced greatly with an SNR enhancement of 10 dB using the 13-bit sinusoid-Barker coded excitation. The amplitude and polarity of the wave packet filtered from the collected MAET signal can be used to achieve the conductivity derivative at the tissue boundary. In this study, we apply the sinusoid-Barker coded modulation method and the mismatched suppression scheme to MAET measurement to ensure the safety for biological tissues with improved SNR and spatial resolution, and suggest the potential applications in biomedical imaging.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11934009,11974187,and 11604156)。
文摘Due to the unique magnetic, mechanical and thermal properties, magnetic nanoparticles(MNPs) have comprehensive applications as the contrast and therapeutic agents in biomedical imaging and magnetic hyperthermia. The linear and nonlinear magnetoacoustic responses determined by the magnetic properties of MNPs have attracted more and more attention in biomedical engineering. By considering the relaxation time of MNPs, we derive the formulae of second harmonic magnetoacoustic responses(2H-MARs) for a cylindrical MNP solution model based on the mechanical oscillations of MNPs in magnetoacoustic tomography with magnetic induction(MAT-MI). It is proved that only the second harmonic magnetoacoustic oscillations can be generated by MNPs under an alternating magnetic excitation. The acoustic pressure of the 2H-MAR is proportional to the square of the magnetic field intensity and exhibits a linear increase with the concentration of MNPs. Numerical simulations of the 2H-MAR are confirmed by the experimental measurements for various magnetic field intensities and solution concentrations using a laser vibrometer. The favorable results demonstrate the feasibility of the harmonic measurements without the fundamental interference of the electromagnetic excitation, and suggest a new harmonic imaging strategy of MAT-MI for MNPs with enhanced spatial resolution and improved signal-to-noise ratio in biomedical applications.
基金Supported by The Capital Health Research and Development of Special Research Fund 2014-4-2102(to Juan Tu)
文摘Chronic infammation and nutritional imbalance are impor-tant comorbid conditions that correlate with poor clinical outcomes in children with chronic kidney disease (CKD). Nutritional disorders such as cachexia/protein energy wasting, obesity and growth retardation negatively impact the quality of life and disease progression in children with CKD. Inadequate nutrition has been asso-ciated with growth disturbances in children with CKD. On the other hand, over-nutrition and obesity are associated with poor outcomes in children with CKD. The exact mechanisms leading to these unfavorable conditions are not fully elucidated and are most likely multifactorial. In this review, we focus on the pathophysiology of nutrition disorders and infammation and their impact on clinical outcomes in children with CKD.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61575095,11374155,and 11674173)
文摘The influence of the inhomogeneous tissue layer on the generation of acoustic vortices (AV) is studied theoretically and experimentally based on the phase screen model. By considering the time-shift of a random phase screen, the formula of acoustic pressure for the AV beam generated by a circular array of eight planar piston sources is derived. With the actual correlation length of the abdominal wall, numerical simulations before and after the insertion of the inhomogeneous tissue layer are conducted, and also demonstrated by experimental measurements. It is proved that, when the thickness variation of the phase screen is less than one wavelength, no significant influence on the generation of AVs can be produced. The variations of vortex nodes and antinodes in terms of the location, shape, and size of AVs are not obvious. Although the circular pressure distribution might be deformed by the phase interference with a larger thickness variation, AVs can still be generated around the center axis with perfect phase spirals in a reduced effective radius. The favorable results provide the feasibility of AV generation inside the human body and suggest the application potential of AVs in object manipulation for biomedical engineering.
基金supported in part by the Natural Sciences and Engineering Council of Canada (CREATE-528202-2019)Canadian Institutes of Health Research (PJT-153240)+1 种基金the Ministry of Science and Technology Key Research and Development Plan of China (No.2018YFC0115901)the National Natural Science Foundation of China (Grant No.11774168).
文摘Sonoporation,or the use of ultrasound in the presence of cavitation nuclei to induce plasma membrane perforation,is well considered as an emerging physical approach to facilitate the delivery of drugs and genes to living cells.Nevertheless,this emerging drug delivery paradigm has not yet reached widespread clinical use,because the efficiency of sonoporation is often deemed to be mediocre due to the lack of detailed understanding of the pertinent scientific mechanisms.Here,we summarize the current observational evidence available on the notion of sonoporation,and we discuss the prevailing understanding of the physical and biological processes related to sonoporation.To facilitate systematic understanding,we also present how the extent of sonoporation is dependent on a multitude of factors related to acoustic excitation parameters(ultrasound frequency,pressure,cavitation dose,exposure time),microbubble parameters(size,concentration,bubble-to-cell distance,shell composition),and cellular properties(cell type,cell cycle,biochemical contents).By adopting a science-backed approach to the realization of sonoporation,ultrasound-mediated drug delivery can be more controllably achieved to viably enhance drug uptake into living cells with high sonoporation efficiency.This drug delivery approach,when coupled with concurrent advances in ultrasound imaging,has potential to become an effective therapeutic paradigm.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11934009,11974187,and 12004187)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20161013 and BK20200724)。
文摘Contactless manipulation of multi-scale objects using the acoustic vortex(AV) tweezers offers tremendous perspectives in biomedical applications.However,it is still hindered by the weak acoustic radiation force(ARF) and torque(ART)around the vortex center.By introducing the elevation angle to the planar transducers of an N-element ring array,the weakfocused acoustic vortex(WFAV) composed of a main-AV and N paraxial-AVs is constructed to conduct a large-scale object manipulation.Different from the traditional focused AV(FAV) generated by a ring array of concave spherical transducers,a much larger focal region of the WFAV is generated by the main lobes of the planar transducers with the size inversely associated with the elevation angle.With the pressure simulation of the acoustic field,the capability of the rotational object driving in the focal plane for the WFAV is analyzed using the ARF and the ART exerted on an elastic ball based on acoustic scattering.With the experimental system built in water,the generation of the WFAV is verified by the scanning measurements of the acoustic field and the capability of object manipulation is also analyzed by the rotational trapping of floating particles in the focal plane.The favorable results demonstrate the feasibility of large-scale rotational manipulation of objects with a strengthened ART and a reduced acousto-thermal damage to biological tissues,showing a promising prospect for potential applications in clinical practice.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11934009,11974187,and 11604156).
文摘To solve the difficulty of generating an ideal Bessel beam,an simplified annular transducer model is proposed to study the axial acoustic radiation force(ARF)and the corresponding negative ARF(pulling force)exerted on centered elastic spheres for acoustic-vortex(AV)beams of arbitrary orders.Based on the theory of acoustic scattering,the axial distributions of the velocity potential and the ARF for AV beams of different orders generated by the annular transducers with different physical sizes are simulated.It is proved that the pulling force can be generated by AV beams of arbitrary orders with multiple axial regions.The pulling force is more likely to exert on the sphere with a smaller k0a(product of the wave number and the radius)for the AV beam with a bigger topological charge due to the strengthened off-axis acoustic scattering.The pulling force decreases with the increase of the axial distance for the sphere with a bigger k0a.More pulling force areas with wider axial regions can be formed by AV beams using a bigger-sized annular transducer.The theoretical results demonstrate the feasibility of generating the pulling force along the axes of AV beams using the experimentally applicable circular array of planar transducers,and suggest application potentials for multi-position stable object manipulations in biomedical engineering.
基金supported by the National Natural Science Foundation of China(NSFC,no.61701243,71771125)the Major Project of Natural Science Foundation of Jiangsu Education Department(no.19KJA180002).
文摘Depression has become one of the most common mental illnesses in the world.For better prediction and diagnosis,methods of automatic depression recognition based on speech signal are constantly proposed and updated,with a transition from the early traditional methods based on hand‐crafted features to the application of architectures of deep learning.This paper systematically and precisely outlines the most prominent and up‐to‐date research of automatic depression recognition by intelligent speech signal processing so far.Furthermore,methods for acoustic feature extraction,algorithms for classification and regression,as well as end to end deep models are investigated and analysed.Finally,general trends are summarised and key unresolved issues are identified to be considered in future studies of automatic speech depression recognition.
文摘The original version of this article(Zhao et al.,2021)unfortunately contained two mistakes.(1)In p.826,the hematoxylin eosin(HE)staining figure of the fourth panel(the Ang Ⅱ+LIPUS group)in Fig.3a was incorrect.
基金the National Natural Science Foundation of China(grant nos.11934009,11974187,12174198,12227808,62025501,31971376,and 92150301)National Key R&D Program of China(2022YFC3401100)+1 种基金the Natural Science Foundation of Jiangsu Province(no.BE2022814)the Qing Lan Project of Jiangsu Province,China.
文摘With unlimited topological modes in mathematics,the fractional orbital angular momentum(FOAM)demonstrates the potential to infinitely increase the channel capacity in acoustic-vortex(AV)communications.However,the accuracy and stability of FOAM recognition are still limited by the nonorthogonality and poor anti-interference of fractional AV beams.The popular machine learning,widely used in optics based on large datasets of images,does not work in acoustics because of the huge engineering of the 2-dimensional point-by-point measurement.Here,we report a strategy of phase-dislocation-mediated high-dimensional fractional AV communication based on pair-FOAM multiplexing,circular sparse sampling,and machine learning.The unique phase dislocation corresponding to the topological charge provides important physical guidance to recognize FOAMs and reduce sampling points from theory to practice.A straightforward convolutional neural network considering turbulence and misalignment is further constructed to achieve the stable and accurate communication without involving experimental data.We experimentally present that the 32-point dual-ring sampling can realize the 10-bit information transmission in a limited topological charge scope from±0.6 to±2.4 with the FOAM resolution of 0.2,which greatly reduce the divergence in AV communications.The infinitely expanded channel capacity is further verified by the improved FOAM resolution of 0.025.Compared with other milestone works,our strategy reaches 3-fold OAM utilization,4-fold information level,and 5-fold OAM resolution.Because of the extra advantages of high dimension,high speed,and low divergence,this technology may shed light on the next-generation AV communication.
基金This work was supported by the National Natural Science Foundation of China(No.81627802)the Priority Academic Program Development of Jiangsu Higher Education Institutions(No.PAPD2014-2016)the National Key R&D Program of China(No.2019YFA0210100).
文摘Objective:Cardiac hypertrophy and fibrosis are major pathological manifestations observed in left ventricular remodeling induced by angiotensin II(AngII).Low-intensity pulsed ultrasound(LIPUS)has been reported to ameliorate cardiac dysfunction and myocardial fibrosis in myocardial infarction(MI)through mechano-transduction and its downstream pathways.In this study,we aimed to investigate whether LIPUS could exert a protective effect by ameliorating AngII-induced cardiac hypertrophy and fibrosis and if so,to further elucidate the underlying molecular mechanisms.Methods:We used AngII to mimic animal and cell culture models of cardiac hypertrophy and fibrosis.LIPUS irradiation was applied in vivo for 20 min every 2 d from one week before mini-pump implantation to four weeks after mini-pump implantation,and in vitro for 20 min on each of two occasions 6 h apart.Cardiac hypertrophy and fibrosis levels were then evaluated by echocardiographic,histopathological,and molecular biological methods.Results:Our results showed that LIPUS could ameliorate left ventricular remodeling in vivo and cardiac fibrosis in vitro by reducing AngII-induced release of inflammatory cytokines,but the protective effects on cardiac hypertrophy were limited in vitro.Given that LIPUS increased the expression of caveolin-1 in response to mechanical stimulation,we inhibited caveolin-1 activity with pyrazolopyrimidine 2(pp2)in vivo and in vitro.LIPUS-induced downregulation of inflammation was reversed and the anti-fibrotic effects of LIPUS were absent.Conclusions:These results indicated that LIPUS could ameliorate AngII-induced cardiac fibrosis by alleviating inflammation via a caveolin-1-dependent pathway,providing new insights for the development of novel therapeutic apparatus in clinical practice.
基金supported by the State Key Laboratory of Heavy Oil Processing,China University of Petroleumthe authors would like to acknowledge their financial support.
文摘The process of performance degradation of road asphalt(RA)is regarded as aging.At present,better understanding of the thermal-oxidative aging of asphalt is achieved and the corresponding method to evaluate this process is developed;meanwhile,photo-oxidative aging(aging in an atmospheric environment,which is referred to as“outdoor aging”in this paper)of asphalt remains at the initial stages of scientific exploration.The outdoor natural ultraviolet(UV)aging of RA and SBS modified asphalt(SBSMA)are investigated in this study.The experimental results show that the basic performances of RA and SBSMA present similar change tendencies.The softening point increased,while the penetration and ductility decreased as the outdoor aging time passed by,and the 5℃ ductility(ductility measured at 5℃)of SBSMA decreased very quickly.The group components of RA and SBSMA also change during UV aging.The content of asphaltene rose and that of aromatics and saturates decreased,while the content of resins changed insignificantly.Moreover,the Fourier transform infrared(FTIR)graphs show that the content of sulfoxide and carbonyl groups in RA and SBSMA increased significantly during the outdoor aging process.