Transboundary haze from biomass burning is one of the most important air pollutions in Southeast Asia.The most recent serious haze episode occurred in 2015.Southern Thailand was affected by the haze during September t...Transboundary haze from biomass burning is one of the most important air pollutions in Southeast Asia.The most recent serious haze episode occurred in 2015.Southern Thailand was affected by the haze during September to October when the particulate matter concentration hit a record high.We investigated physical and chemical characteristics of aerosols,including concentration and aerosol size distribution down to sub-micron sizes during haze episodes in 2013 and 2015 and,for reference,an insignificant haze period in 2017.The highest total suspended particulates and PM 10 levels in Hat Yai city were 340.1 and 322.5μg/m^3.The mass fractions were nanoparticles(<100 nm)3.1%-14.8%and fine particles(<1μm)54.6%-59.1%.Polycyclic aromatic hydrocarbon size distributions in haze periods peaked at 0.75μm and the concentrations are 2-30 times higher than the normal period.High molecular weight(4-6 ring)PAHs during the haze episode contribute to about 56.7%-88.0%for nanoparticles.The average values of benzo(a)pyrene toxic equivalency quotient were 3.34±2.54ng/m^3 in the 2015 haze period but only 0.89±0.17 ng/m^3 in 2017.It is clear that particles smaller than 1μm,were highly toxic.Nanoparticles contributed 19.4%-26.0%of total BaP-TEQ,whereas the mass fraction is 13.1%-14.8%.Thus the nanoparticles were more carcinogenic and can cause greater health effect than larger particles.The fraction of BaP-TEQ for nanoparticles during 2017 non-haze period was nearly the same,while the mass fraction was lower.This indicates that nanoparticles are the significant source of carcinogenic aerosols both during haze and non-haze periods.展开更多
The characteristics of the particles of the smoke that is emitted from the burning ofbiomass fuels were experimentally investigated using a laboratory-scale tube furnace and different types of biomass fuels: rubber w...The characteristics of the particles of the smoke that is emitted from the burning ofbiomass fuels were experimentally investigated using a laboratory-scale tube furnace and different types of biomass fuels: rubber wood, whole wood pellets and rice husks. Emitted amounts of particles, particle-bound polycyclic aromatic hydrocarbons (PAHs) and water-soluble organic carbon (WSOC) are discussed relative to the size of the emitted particles, ranging to as small as nano-size (〈70 nm), and to the rate of heating rate during combustion, differential thermal analysis (DTA) and thermogravimetric analysis (TG) techniques were used to examine the effect of heating rate and biomass type on combustion behaviors relative to the characteristics of particle emissions. In the present study, more than 30% of the smoke particles from the burning ofbiomass fuel had a mass that fell within a range of 〈 100 nm. Particles smaller than 0.43 μm contributed greatly to the total levels of toxic PAHs and WSOC. The properties of these particles were influenced by the fuel component, the combustion conditions, and the particle size. Although TC--DTA results indicated that the heating rate in a range of 10-20℃did not show a significant effect on the combustion properties, there was a slight increase in the decomposition temperature as heating rate was increased. The nano-size particles had the smallest fraction of particle mass and particle-bound PAHs, but nonetheless these particles registered the largest fraction of particle-bound WSOC.展开更多
基金This research was financially supported by Biodiversitybased Economy Development Office of Thailand under grant#ENG590707S.
文摘Transboundary haze from biomass burning is one of the most important air pollutions in Southeast Asia.The most recent serious haze episode occurred in 2015.Southern Thailand was affected by the haze during September to October when the particulate matter concentration hit a record high.We investigated physical and chemical characteristics of aerosols,including concentration and aerosol size distribution down to sub-micron sizes during haze episodes in 2013 and 2015 and,for reference,an insignificant haze period in 2017.The highest total suspended particulates and PM 10 levels in Hat Yai city were 340.1 and 322.5μg/m^3.The mass fractions were nanoparticles(<100 nm)3.1%-14.8%and fine particles(<1μm)54.6%-59.1%.Polycyclic aromatic hydrocarbon size distributions in haze periods peaked at 0.75μm and the concentrations are 2-30 times higher than the normal period.High molecular weight(4-6 ring)PAHs during the haze episode contribute to about 56.7%-88.0%for nanoparticles.The average values of benzo(a)pyrene toxic equivalency quotient were 3.34±2.54ng/m^3 in the 2015 haze period but only 0.89±0.17 ng/m^3 in 2017.It is clear that particles smaller than 1μm,were highly toxic.Nanoparticles contributed 19.4%-26.0%of total BaP-TEQ,whereas the mass fraction is 13.1%-14.8%.Thus the nanoparticles were more carcinogenic and can cause greater health effect than larger particles.The fraction of BaP-TEQ for nanoparticles during 2017 non-haze period was nearly the same,while the mass fraction was lower.This indicates that nanoparticles are the significant source of carcinogenic aerosols both during haze and non-haze periods.
基金supported by KAKENHI (No.22710073) from the Japan Society for the Promotion of Science (JSPS)the JENESYS Program of the Japan Student Services Organization (JASSO)
文摘The characteristics of the particles of the smoke that is emitted from the burning ofbiomass fuels were experimentally investigated using a laboratory-scale tube furnace and different types of biomass fuels: rubber wood, whole wood pellets and rice husks. Emitted amounts of particles, particle-bound polycyclic aromatic hydrocarbons (PAHs) and water-soluble organic carbon (WSOC) are discussed relative to the size of the emitted particles, ranging to as small as nano-size (〈70 nm), and to the rate of heating rate during combustion, differential thermal analysis (DTA) and thermogravimetric analysis (TG) techniques were used to examine the effect of heating rate and biomass type on combustion behaviors relative to the characteristics of particle emissions. In the present study, more than 30% of the smoke particles from the burning ofbiomass fuel had a mass that fell within a range of 〈 100 nm. Particles smaller than 0.43 μm contributed greatly to the total levels of toxic PAHs and WSOC. The properties of these particles were influenced by the fuel component, the combustion conditions, and the particle size. Although TC--DTA results indicated that the heating rate in a range of 10-20℃did not show a significant effect on the combustion properties, there was a slight increase in the decomposition temperature as heating rate was increased. The nano-size particles had the smallest fraction of particle mass and particle-bound PAHs, but nonetheless these particles registered the largest fraction of particle-bound WSOC.