期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of chemical regulators on the recovery of leaf physiology,dry matter accumulation and translocation,and yield-related characteristics in winter wheat following dry-hot wind 被引量:1
1
作者 Yanan Xu Yue Wu +5 位作者 Yan Han jiqing song Wenying Zhang Wei Han Binhui Liu Wenbo Bai 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期108-121,共14页
Dry-hot wind stress causes losses in wheat productivity in major growing regions worldwide,especially winter wheat in the Huang-Huai-Hai Plain of China,and both the occurrence and severity of such events are likely to... Dry-hot wind stress causes losses in wheat productivity in major growing regions worldwide,especially winter wheat in the Huang-Huai-Hai Plain of China,and both the occurrence and severity of such events are likely to increase with global climate change.To investigate the recovery of physiological functions and yield formation using a new noncommercial chemical regulator(NCR)following dry-hot wind stress,we conducted a three-year field experiment(2018-2021)with sprayed treatments of tap water(control),monopotassium phosphate(CKP),NCR at both the jointing and flowering stages(CFS),and NCR only at the jointing stage(FSJ)or flowering stage(FSF).The leaf physiology,biomass accumulation and translocation,grain-filling process,and yield components in winter wheat were assessed.Among the single spraying treatments,the FSJ treatment was beneficial for the accumulation of dry matter before anthesis,as well as larger increases in the maximum grain-filling rate and mean grain-filling rate.The FSF treatment performed better in maintaining a high relative chlorophyll content as indicated by the SPAD value,and a low rate of excised leaf water loss in flag leaves,promoting dry matter accumulation and the contribution to grain after anthesis,prolonging the duration of grain filling,and causing the period until the maximum grain-filling rate reached earlier.The CFS treatment was better than any other treatments in relieving the effects of dry-hot wind.The exogenous NCR treatments significantly increased grain yields by 12.45-18.20% in 2018-2019,8.89-13.82% in 2019-2020,and 8.10-9.00% in 2020-2021.The conventional measure of the CKP treatment only increased grain yield by 6.69% in 2020-2021.The CFS treatment had the greatest mitigating effect on yield loss under dry-hot wind stress,followed by the FSF and FSJ treatments,and the CKP treatment only had a minimal effect.In summary,the CFS treatment could be used as the main chemical control measure for wheat stress resistance and yield stability in areas with a high incidence of dry-hot wind.This treatment can effectively regulate green retention and the water status of leaves,promote dry matter accumulation and efficient translocation,improve the grain-filling process,and ultimately reduce yield losses. 展开更多
关键词 preparation stress foliar spraying GRAIN-FILLING REMOBILIZATION
在线阅读 下载PDF
Influence of plastic film mulching and planting density on yield,leaf anatomy,and root characteristics of maize on the Loess Plateau 被引量:10
2
作者 Li Niu Yanyan Yan +8 位作者 Peng Hou Wenbo Bai Rulang Zhao Yonghong Wang Shaokun Li Taisheng Du Ming Zhao jiqing song Wenbin Zhou 《The Crop Journal》 SCIE CAS CSCD 2020年第4期548-564,共17页
In rainfed areas of northwestern China,maize production is constrained mainly by low temperature during early growth and water limitation during the entire growth period.Plastic film mulching is commonly used to incre... In rainfed areas of northwestern China,maize production is constrained mainly by low temperature during early growth and water limitation during the entire growth period.Plastic film mulching is commonly used to increase maize yield in this area,because it increases topsoil temperature and moisture content as well as water use efficiency.However,the physiological and anatomical bases of maize yield improvement with plastic film mulching are not well understood.The effects of plastic film mulching and planting density on maize yield,photosynthetic characteristics,respiration,leaf anatomy,and root growth were studied in a two-year field experiment conducted on the Loess Plateau of China in 2017 and 2018.The experiment used a split-split plot design with two mulching treatments(plastic film mulching and no mulching),two planting densities(7.5×104 and10.5×104 plants ha-1),and two maize cultivars,Zhengdan 958 and Xianyu 335.Compared with no mulching,plastic film mulching increased maize yields by 31.1%–46.4%in 2017 and3.6%–34.7%in 2018.Compared with low planting density,high planting density significantly increased and slightly reduced yields of both cultivars in the dry year 2017 and the rainy year 2018,respectively.Plastic film mulching increased photosynthesis and respiration as well as leaf stomatal density and aperture.Photosynthetic rate,dark respiration,and stomatal conductance and aperture were lower at high planting than at low planting density.Maize yield was positively correlated with photosynthesis,dark respiration,and stomatal aperture.Mulching increased root dry weight and length in the 0–20 cm soil layer and root activity at maturity.Overall,the changes in root growth and leaf anatomy resulted in increased photosynthesis and dark respiration,and the increased photosynthesis contributed to the increase in grain yield and biomass production under plastic film mulching conditions.Our results increase understanding of the physiological mechanisms by which plastic film mulching increases maize yield in water-and temperature-limited areas. 展开更多
关键词 PLANTING CULTIVAR ANATOMY
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部