期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Review on Lithium-ion Battery PHM from the Perspective of Key PHM Steps
1
作者 jinzhen kong Jie Liu +4 位作者 Jingzhe Zhu Xi Zhang Kwok-Leung Tsui Zhike Peng Dong Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期1-22,共22页
Prognostics and health management(PHM)has gotten considerable attention in the background of Industry 4.0.Battery PHM contributes to the reliable and safe operation of electric devices.Nevertheless,relevant reviews ar... Prognostics and health management(PHM)has gotten considerable attention in the background of Industry 4.0.Battery PHM contributes to the reliable and safe operation of electric devices.Nevertheless,relevant reviews are still continuously updated over time.In this paper,we browsed extensive literature related to battery PHM from 2018to 2023 and summarized advances in battery PHM field,including battery testing and public datasets,fault diagnosis and prediction methods,health status estimation and health management methods.The last topic includes state of health estimation methods,remaining useful life prediction methods and predictive maintenance methods.Each of these categories is introduced and discussed in details.Based on this survey,we accordingly discuss challenges left to battery PHM,and provide future research opportunities.This research systematically reviews recent research about battery PHM from the perspective of key PHM steps and provide some valuable prospects for researchers and practitioners. 展开更多
关键词 Lithium-ion batteries Prognostics and health management Remaining useful life State of health Predictive maintenance
在线阅读 下载PDF
Online battery model parameters identification approach based on bias-compensated forgetting factor recursive least squares
2
作者 Dong Zhen Jiahao Liu +5 位作者 Shuqin Ma Jingyu Zhu jinzhen kong Yizhao Gao Guojin Feng Fengshou Gu 《Green Energy and Intelligent Transportation》 2024年第4期12-22,共11页
Accuracy of a lithium-ion battery model is pivotal in faithfully representing actual state of battery,thereby influencing safety of entire electric vehicles.Precise estimation of battery model parameters using key mea... Accuracy of a lithium-ion battery model is pivotal in faithfully representing actual state of battery,thereby influencing safety of entire electric vehicles.Precise estimation of battery model parameters using key measured signals is essential.However,measured signals inevitably carry random noise due to complex real-world operating environments and sensor errors,potentially diminishing model estimation accuracy.Addressing the challenge of accuracy reduction caused by noise,this paper introduces a Bias-Compensated Forgetting Factor Recursive Least Squares(BCFFRLS)method.Initially,a variational error model is crafted to estimate the average weighted variance of random noise.Subsequently,an augmentation matrix is devised to calculate the bias term using augmented and extended parameter vectors,compensating for bias in the parameter estimates.To assess the proposed method's effectiveness in improving parameter identification accuracy,lithium-ion battery experiments were conducted in three test conditions—Urban Dynamometer Driving Schedule(UDDS),Dynamic Stress Test(DST),and Hybrid Pulse Power Characterization(HPPC).The proposed method,alongside two contrasting methods—the offline identification method and Forgetting Factor Recursive Least Squares(FFRLS)—was employed for battery model parameter identification.Comparative analysis reveals substantial improvements,with the mean absolute error reduced by 25%,28%,and 15%,and the root mean square error reduced by 25.1%,42.7%,and 15.9%in UDDS,HPPC,and DST operating conditions,respectively,when compared to the FFRLS method. 展开更多
关键词 Lithium-ion battery Battery model Recursive least squares Parameter identification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部