The intelligent textile sensors based on fiber(1D)and fabric(2D)are the ideal candidates for wearable devices.Their flexible weaving and unique structure endow them with flexibility,lightweight,good air permeability,a...The intelligent textile sensors based on fiber(1D)and fabric(2D)are the ideal candidates for wearable devices.Their flexible weaving and unique structure endow them with flexibility,lightweight,good air permeability,and feasible integration with garments.In view of the spring-up of novel textile-based strain sensors,the novel materials and fabrication approaches were elaborated from spatial perspectives,i.e.,1D fibers/yarn and 2D fabric.The intrinsic sensing mechanism is the primary fac-tor affecting sensor sensitivity,and the variation trend of the sensing signal is closely related to it.Although existing studies have involved various sensing mechanisms,there is still lacking systematic classification and discussion.Hence,the sensing mechanisms of textile-based sensors were elaborated from spatial perspectives.Considering that strain sensors were mostly based on resistance variation,the sensing mechanisms of resistive textile-based strain sensors were mainly focused,mainly including fiber deformation,tunneling effect,crack propagation,fabric deformation,electrical contact and bridge connec-tion.Meanwhile,the corresponding resistance prediction models,usually used as important data fitting methodology,were also comprehensively discussed,which can reproduce the resistance trend and provide guidance for the sensor performance.Finally,the multifunctionality of textile-based strain sensors was summarized,namely multi-mode signal detection,visual interaction,energy collection,thermal management and medical treatment were discussed.It was expected to provide research insights into the multifunctional integration of textile sensors.展开更多
As wearable electronic devices are rapidly developing,there is an urgent need for lightweight,flexible,and ultrathin multifunctional electromagnetic interference(EMI)shielding materials.However,the flexible ultrathin ...As wearable electronic devices are rapidly developing,there is an urgent need for lightweight,flexible,and ultrathin multifunctional electromagnetic interference(EMI)shielding materials.However,the flexible ultrathin paper that combines efficient shielding and multifunctional integration remains a considerable challenge.Here,a novel MXene/Fe_(3)O_(4)@CNTs/TOCNF(MCT,MXene=transition metal carbide/carbonitride,CNTs=carbon nanotubes,TOCNF=TEMPO-oxidized cellulose nanofiber,TEMPO=2,2,6,6-tetramethylpiperidine-1-oxyl radical)nanocomposite paper with a multilayer electromagnetic gradient structure and electromagnetic dual losses was successfully prepared by a simple filtration strategy.Benefiting from effective gradient design and adjusting the proportion of TOCNF,the composite paper(only 18μm)exhibits outstanding shielding effectiveness(SE)of 66 dB in the X-band,ultrahigh thickness-specific SE and surface-specific SE values of 3300 dB·mm-1 and 31,428 dB·cm^(2)·g^(-1)respectively.Furthermore,dehydroxylation treatment improves MCT paper's hydrophobicity,environmental stability,and mechanical strength,expanding its range of use.Excitingly,the highly efficient Joule heating properties and hydrophobicity provide MCT additional de-icing capabilities.We also simulated the electromagnetic shielding effects of MCT composite paper,which was applied in practice.This study documents an innovative and intriguing material combination,providing a simple and effective manufacturing strategy for developing EMI shielding materials.MCT paper is highly suitable for outdoor portable or wearable electronic devices and has significant application potential in humid/severe cold environments.展开更多
基金supported by the major project of the National Natural Science Foundation of China(52090033/52090030).
文摘The intelligent textile sensors based on fiber(1D)and fabric(2D)are the ideal candidates for wearable devices.Their flexible weaving and unique structure endow them with flexibility,lightweight,good air permeability,and feasible integration with garments.In view of the spring-up of novel textile-based strain sensors,the novel materials and fabrication approaches were elaborated from spatial perspectives,i.e.,1D fibers/yarn and 2D fabric.The intrinsic sensing mechanism is the primary fac-tor affecting sensor sensitivity,and the variation trend of the sensing signal is closely related to it.Although existing studies have involved various sensing mechanisms,there is still lacking systematic classification and discussion.Hence,the sensing mechanisms of textile-based sensors were elaborated from spatial perspectives.Considering that strain sensors were mostly based on resistance variation,the sensing mechanisms of resistive textile-based strain sensors were mainly focused,mainly including fiber deformation,tunneling effect,crack propagation,fabric deformation,electrical contact and bridge connec-tion.Meanwhile,the corresponding resistance prediction models,usually used as important data fitting methodology,were also comprehensively discussed,which can reproduce the resistance trend and provide guidance for the sensor performance.Finally,the multifunctionality of textile-based strain sensors was summarized,namely multi-mode signal detection,visual interaction,energy collection,thermal management and medical treatment were discussed.It was expected to provide research insights into the multifunctional integration of textile sensors.
基金supported by the major project of the National Natural Science Foundation of China(Nos.52090033 and 52090030).
文摘As wearable electronic devices are rapidly developing,there is an urgent need for lightweight,flexible,and ultrathin multifunctional electromagnetic interference(EMI)shielding materials.However,the flexible ultrathin paper that combines efficient shielding and multifunctional integration remains a considerable challenge.Here,a novel MXene/Fe_(3)O_(4)@CNTs/TOCNF(MCT,MXene=transition metal carbide/carbonitride,CNTs=carbon nanotubes,TOCNF=TEMPO-oxidized cellulose nanofiber,TEMPO=2,2,6,6-tetramethylpiperidine-1-oxyl radical)nanocomposite paper with a multilayer electromagnetic gradient structure and electromagnetic dual losses was successfully prepared by a simple filtration strategy.Benefiting from effective gradient design and adjusting the proportion of TOCNF,the composite paper(only 18μm)exhibits outstanding shielding effectiveness(SE)of 66 dB in the X-band,ultrahigh thickness-specific SE and surface-specific SE values of 3300 dB·mm-1 and 31,428 dB·cm^(2)·g^(-1)respectively.Furthermore,dehydroxylation treatment improves MCT paper's hydrophobicity,environmental stability,and mechanical strength,expanding its range of use.Excitingly,the highly efficient Joule heating properties and hydrophobicity provide MCT additional de-icing capabilities.We also simulated the electromagnetic shielding effects of MCT composite paper,which was applied in practice.This study documents an innovative and intriguing material combination,providing a simple and effective manufacturing strategy for developing EMI shielding materials.MCT paper is highly suitable for outdoor portable or wearable electronic devices and has significant application potential in humid/severe cold environments.