After publication of this article1,it was brought to our at-tention that the mathematical expressions‘‰’were mis-takenly replaced by‘%’for salinities.Details are listed below.1.In the last sentence in abstract,“...After publication of this article1,it was brought to our at-tention that the mathematical expressions‘‰’were mis-takenly replaced by‘%’for salinities.Details are listed below.1.In the last sentence in abstract,“approximately 0.1℃and 0.5%”should be“approximately 0.1℃and 0.5‰”.展开更多
The Brillouin scattering spectrum has been used to investigate the properties of a liquid medium.Here,we propose an improved method based on the double-edge technique to obtain the Brillouin spectrum of a liquid.We ca...The Brillouin scattering spectrum has been used to investigate the properties of a liquid medium.Here,we propose an improved method based on the double-edge technique to obtain the Brillouin spectrum of a liquid.We calculated the transmission ratios and deduced the Brillouin shift and linewidth to construct the Brillouin spectrum by extracting the Brillouin edge signal through filtered double-edge data.We built a detection system to test the performance of this method and measured the Brillouin spectrum for distilled water at different temperatures and compared it with the theoretical prediction.The observed difference between the experimental and theoretical values for Brillouin shift and linewidth is less than 4.3 MHz and 3.2 MHz,respectively.Moreover,based on the double-edge technique,the accuracy of the extracted temperatures and salinity is approximately 0.1°C and 0.5‰,respectively,indicating significant potential for application in water detection and oceanography.展开更多
Glutathione S-transferases (GSTs) represent a large and diverse enzyme family ubiquitously distributed across the plant kingdom. These proteins catalyze the conjugation of glutathione (GSH) with electrophilic substrat...Glutathione S-transferases (GSTs) represent a large and diverse enzyme family ubiquitously distributed across the plant kingdom. These proteins catalyze the conjugation of glutathione (GSH) with electrophilic substrates in response to various stress conditions. Beyond their role in stress adaptation, certain GSTs are integral regulators of plant growth and development, contributing to a range of physiological processes. Most GST proteins exhibit dual enzymatic activities, functioning as both transferases and peroxidases, which enables their involvement in diverse cellular processes, including detoxification and stress responses. Recent advancements, particularly in X-ray crystallography, have enabled detailed structural analysis of GST proteins, significantly enhancing our understanding of their biological functions. This review offers a comprehensive overview of the classification and structural characteristics of GSTs in plants. It also highlights recent findings on their roles in plant growth and development, cell signaling, catalytic transport, and stress tolerance. Furthermore, key scientific challenges related to GSTs are discussed, focusing on their potential applications in agriculture. These insights aim to facilitate the screening of functional GST genes and support molecular breeding efforts across diverse crop species.展开更多
文摘After publication of this article1,it was brought to our at-tention that the mathematical expressions‘‰’were mis-takenly replaced by‘%’for salinities.Details are listed below.1.In the last sentence in abstract,“approximately 0.1℃and 0.5%”should be“approximately 0.1℃and 0.5‰”.
基金supported by the National Natural Science Foundation of China (Grant No. 62175072, No. 62175072 and No. 12074209)the Open Project of State Key Laboratory of Low-Dimensional Quantum Physics (Grant No. KF202008)support from International Postdoctoral Exchange Fellowship Program (Talent-Introduction Program)。
文摘The Brillouin scattering spectrum has been used to investigate the properties of a liquid medium.Here,we propose an improved method based on the double-edge technique to obtain the Brillouin spectrum of a liquid.We calculated the transmission ratios and deduced the Brillouin shift and linewidth to construct the Brillouin spectrum by extracting the Brillouin edge signal through filtered double-edge data.We built a detection system to test the performance of this method and measured the Brillouin spectrum for distilled water at different temperatures and compared it with the theoretical prediction.The observed difference between the experimental and theoretical values for Brillouin shift and linewidth is less than 4.3 MHz and 3.2 MHz,respectively.Moreover,based on the double-edge technique,the accuracy of the extracted temperatures and salinity is approximately 0.1°C and 0.5‰,respectively,indicating significant potential for application in water detection and oceanography.
基金funded by National Natural Science Foundation of China(grant no.32301870 to Chen Lin)Natural Science Foundation of Jiangsu Province(grant no.BK20230568 to Chen Lin)+3 种基金the Jiangsu Provincial Agricultural Science and Technology Independent Innovation Fund(grant no.CX(24)3124 to Chen Lin)Outstanding Ph.D.Programin Yangzhou(grant no.YZLYJFJH2022YXBS147 to Chen Lin)the General Project of Basic Scientific Research to colleges and universities in Jiangsu Province(grant no.22KJB210019 toChen Lin)the Priority Academic Program Development of Jiangsu Higher Education Institutions is greatly acknowledged.
文摘Glutathione S-transferases (GSTs) represent a large and diverse enzyme family ubiquitously distributed across the plant kingdom. These proteins catalyze the conjugation of glutathione (GSH) with electrophilic substrates in response to various stress conditions. Beyond their role in stress adaptation, certain GSTs are integral regulators of plant growth and development, contributing to a range of physiological processes. Most GST proteins exhibit dual enzymatic activities, functioning as both transferases and peroxidases, which enables their involvement in diverse cellular processes, including detoxification and stress responses. Recent advancements, particularly in X-ray crystallography, have enabled detailed structural analysis of GST proteins, significantly enhancing our understanding of their biological functions. This review offers a comprehensive overview of the classification and structural characteristics of GSTs in plants. It also highlights recent findings on their roles in plant growth and development, cell signaling, catalytic transport, and stress tolerance. Furthermore, key scientific challenges related to GSTs are discussed, focusing on their potential applications in agriculture. These insights aim to facilitate the screening of functional GST genes and support molecular breeding efforts across diverse crop species.