Adjusting the intrinsic activity and conductivity of electrocatalysts may be a crucial way for excellent performance for water splitting.Herein,the rational design of vanadium element doped cobalt phosphide(V-doped Co...Adjusting the intrinsic activity and conductivity of electrocatalysts may be a crucial way for excellent performance for water splitting.Herein,the rational design of vanadium element doped cobalt phosphide(V-doped CoP)nanoparticles has been investigated through a facile gaseous phosphorization using cobalt vanadium oxide or hydroxide(Co-V hydr(oxy)oxide)as precursor.The physical characterization shows that the homogeneous dispersion of V element on V-doped CoP nanoparticles have obtained,which may imply the enhanced electrocatalytic activity for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).The electrochemical measurements of the prepared V-doped CoP in alkaline electrolyte demonstrate the superior electrocatalytic activity for both HER(overpotential of 235 mV@10 mA cm^-2)and OER(overpotential of 340 mV@10 mA cm^-2).Further,V-doped CoP nanoparticles used as anode and cathode simultaneously in a cell require only 370 mV to achieve a current density of 10 mA cm^-2.The outstanding electrocatalytic activity may be ascribed to the improved conductivity and intrinsic activity owing to phosphating and the doping of V element.In addition,the long-term stability of V-doped Co P has been obtained.Therefore,metal doping into transition metal-based phosphides may be a promising strategy for the remarkable bifunctional electrocatalyst for water splitting.展开更多
The most energy-inefficient step in the oxygen evolution reaction(OER), which involves a complicated four-electron transfer process, limits the efficiency of the electrochemical water splitting. Here, well-defined Ni/...The most energy-inefficient step in the oxygen evolution reaction(OER), which involves a complicated four-electron transfer process, limits the efficiency of the electrochemical water splitting. Here, well-defined Ni/Co3O4 nanoparticles coupled with N-doped carbon hybrids(Ni/Co3O4@NC) were synthesized via a facile impregnation-calcination method as efficient electrocatalysts for OER in alkaline media. Notably, the impregnation of the polymer with Ni and Co ions in the first step ensured the homogeneous distribution of metals, thus guaranteeing the subsequent in situ calcination reaction, which produced well-dispersed Ni and Co3O4 nanoparticles. Moreover, the N-doped carbon matrix formed at high temperatures could effectively prevent the aggregation and coalescence, and regulate the electronic configuration of active species. Benefiting from the synergistic effect between the Ni, Co3O4, and NC species, the obtained Ni/Co3O4@NC hybrids exhibited enhanced OER activities and remarkable stability in an alkaline solution with a smaller overpotential of 350 m V to afford 10 m A cm-2, lower Tafel slope of 52.27 m V dec-1, smaller charge-transfer resistance, and higher double-layer capacitance of 25.53 m F cm-2 compared to those of unary Co3O4@NC or Ni@NC metal hybrids. Therefore, this paper presents a facile strategy for designing other heteroatom-doped oxides coupled with ideal carbon materials as electrocatalysts for the OER.展开更多
Developing a facile approach based on transition metal-based Prussian blue(PB)and its analogues(PBAs)with core-shell nanostructure is a very promising choice for constructing cost-effective electrocatalysts for oxygen...Developing a facile approach based on transition metal-based Prussian blue(PB)and its analogues(PBAs)with core-shell nanostructure is a very promising choice for constructing cost-effective electrocatalysts for oxygen evolution reaction(OER).Herein,a bimetallic core-shell structure with open cages of Fe-doped CoP(Fe-CoP cage)has been synthesized using CoFe-PBA cage-4 as precursor through a facile hydrothermal method and following phosphating process.Interestingly,there is an open hole in each face center of Fe-CoP cage,which suggests the more exposure of active sites for OER.Electrochemical measurements show that Fe-CoP cage can afford a current density of 10 mA cm-2 at a low overpotential(300 mV),which is better than that of RuO2.The excellent performance can be attributed to Fe doping composition and unique open-cage core-shell structure.The synergistic effect derived from bimetallic active for OER has been discussed.And its great catalytic stability has been evaluated via 1000 cycles of CV and chronoamperometry measurement.This work provides a potential method to design multiple transitional metal-doping electrocatalysts with complex framework derived from PBAs for water splitting.展开更多
To meet the current energy needs of society,the highly efficient and continuous production of clean energy is required.One of the key issues facing the green hydrogen evolution is the construction of efficient,low-cos...To meet the current energy needs of society,the highly efficient and continuous production of clean energy is required.One of the key issues facing the green hydrogen evolution is the construction of efficient,low-cost electrocatalysts.Prussian blue(PB),Prussian blue analogs(PBAs),and their derivatives have tunable metal centers and have attracted significant interest as novel photo-and electrochemical catalysts.In this review,recent research progress into PB/PBA-based hollow structures,substrate-supported nanostructures,and their derivatives for green water splitting is discussed and summarized.First,several remarkable examples of nanostructured PB/PBAs supported on substrates(copper foil,carbon cloth,and nickel foam)and hollow structures(such as single-shelled hollow boxes,open hollow cages,and intricate hollow structures(multi-shell and yolk-shell))are discussed in detail,including their synthesis and formation mechanisms.Subsequently,the applications of PB/PBA derivatives((hydr)oxides,phosphides,chalcogenides,and carbides)for water splitting are discussed.Finally,the limitations in this research area and the most urgent challenges are summarized.We hope that this review will stimulate more researchers to develop technologies based on these intricate PB/PBA structures and their derivatives for highly efficient,green water splitting.展开更多
The ternary cobalt-nickel-iron phosphide nanocubes (P-Co0.9Ni0.9Fe1.2 NCs) with high intrinsic activity, conductivity, defect concentration and optimized ratio have been realized through a facile phosphorization treat...The ternary cobalt-nickel-iron phosphide nanocubes (P-Co0.9Ni0.9Fe1.2 NCs) with high intrinsic activity, conductivity, defect concentration and optimized ratio have been realized through a facile phosphorization treatment using ternary cobalt-nickel-iron nanocubes of Prussian blue analogs (PBA) as a precursor. The scanning electron microscopy and transmission electron microscopy results show that the P-Co0.9Ni0.9Fe1.2 NCs maintain a cubic structure with a rough surface, implying the rich surface defects as exposed active sites. The thermal phosphorization of the ternary PBA precursor not only provids carbon doping but also leads to the in situ construction of surface defects on the NCs. The carbon doping from the PBA precursor lowers the charge transfer resistance and optimizes the electronic transformation. The synergistic effect among the ternary metal ions and rich defects contributes to the enhanced electrocatalytic performance . The P-Co0.9Ni0.9Fe1.2NCs achieve low overpotentials of -200.7 and 273.1 mV at a current density of 10 mA cm^-2 for the hydrogen evolution reaction and the oxygen evolution reaction, respectively. The potential of overall water splitting reaches 1.52 V at a current density of 10 mA cm^-2. The longterm stability of the electrocatalysts was also evaluated. This work provides a facile method to design efficient transitionmetal- based bifunctional electrocatalysts for overall water splitting.展开更多
Designing the specific crystal phase with better intrinsic activity and more active sites is a very promising strategy for earth-abundant electrocatalysts for oxygen evolution reaction(OER).Herein,a facile two-step me...Designing the specific crystal phase with better intrinsic activity and more active sites is a very promising strategy for earth-abundant electrocatalysts for oxygen evolution reaction(OER).Herein,a facile two-step method including the high-pressure microwave and the hydrothermal sulfurization is adopted to prepare the WS_(x)/Ni_(9)S_(8) hetero-catalyst on nickel foam(WS_(x)/Ni_(9)S_(8)/NF).Firstly,WO3 polyhedrons homogeneously cover the surface of NF through the high-pressure microwave hydrothermal process.Secondly,WS_(x)/Ni_(9)S_(8) nanoparticles on the surface of NF can be synthesized after a hydrothermal sulfurization,which has been confirmed by scanning electron microscopy(SEM) elemental mapping and high-resolution transmission electron microscopy(HRTEM).The amorphous WSx and Ni9 S8 phase may provide the dual active sites for OER.The electrochemical measurements show that WS_(x)/Ni_(9)S_(8)/NF has superior OER activity with a low overpotential of 320 mV at the current density of 100 mA·cm^(-2),better than those of other samples.The enhanced OER performance may be due to the synergistic catalysis from Ni9 S8 phase and high valence of W.Owing to the stable structure of Ni9 S8,the long-term stability of WS_(x)/Ni_(9)S_(8)/NF for at least 10 h can be obtained.This work may provide a new approach for the doped nickel sulfides crystal phase through high-pressure microwave hydrothermal assistance for OER.展开更多
The heterojunction interfacial modulation of FeP is an effective strategy to regulate the intrinsic activity and stability, which is a major challenge to promote the industrial application of FeP-based electrocatalyst...The heterojunction interfacial modulation of FeP is an effective strategy to regulate the intrinsic activity and stability, which is a major challenge to promote the industrial application of FeP-based electrocatalysts. Herein, hollow Fe_(4)C/FeP box with heterojunction interface and carbon armor is successfully synthesized, which can expose numerous active sites and protect catalyst from corrosion. Electrochemical measurements show that Fe_(4)C/FeP exhibits excellent hydrogen evolution activity and stability. It only needs 180 mV to achieve the current density of 10 mA cm^(-2). The high-activity may be due to the synergistic effects of porous framework, graphitic carbon coating and heterojunction structure of FeC and FeP, which optimize the electronic structure and accelerates electron transfer. In addition, the target catalyst can withstand 5000 cycles of CV testing without significant change in properties. The excellent stability may be attributed to the graphitic carbon coating as the armor that can prevent the catalyst from corrosion of electrolyte. This work may provide a synthetic approach to produce a series of carbon-coated and heterojunction structure of transition metal phosphides for water splitting.展开更多
基金financially supported by the National Natural Science Foundation of China(21776314)Major Program of Shandong Province Natural Science Foundation(ZR2018ZC0639)+2 种基金Shandong Provincial Natural Science Foundation(ZR2017MB059)the Fundamental Research Funds for the Central Universities(18CX05016A)Postgraduate Innovation Project of China University of Petroleum(YCX2018034)
文摘Adjusting the intrinsic activity and conductivity of electrocatalysts may be a crucial way for excellent performance for water splitting.Herein,the rational design of vanadium element doped cobalt phosphide(V-doped CoP)nanoparticles has been investigated through a facile gaseous phosphorization using cobalt vanadium oxide or hydroxide(Co-V hydr(oxy)oxide)as precursor.The physical characterization shows that the homogeneous dispersion of V element on V-doped CoP nanoparticles have obtained,which may imply the enhanced electrocatalytic activity for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).The electrochemical measurements of the prepared V-doped CoP in alkaline electrolyte demonstrate the superior electrocatalytic activity for both HER(overpotential of 235 mV@10 mA cm^-2)and OER(overpotential of 340 mV@10 mA cm^-2).Further,V-doped CoP nanoparticles used as anode and cathode simultaneously in a cell require only 370 mV to achieve a current density of 10 mA cm^-2.The outstanding electrocatalytic activity may be ascribed to the improved conductivity and intrinsic activity owing to phosphating and the doping of V element.In addition,the long-term stability of V-doped Co P has been obtained.Therefore,metal doping into transition metal-based phosphides may be a promising strategy for the remarkable bifunctional electrocatalyst for water splitting.
文摘The most energy-inefficient step in the oxygen evolution reaction(OER), which involves a complicated four-electron transfer process, limits the efficiency of the electrochemical water splitting. Here, well-defined Ni/Co3O4 nanoparticles coupled with N-doped carbon hybrids(Ni/Co3O4@NC) were synthesized via a facile impregnation-calcination method as efficient electrocatalysts for OER in alkaline media. Notably, the impregnation of the polymer with Ni and Co ions in the first step ensured the homogeneous distribution of metals, thus guaranteeing the subsequent in situ calcination reaction, which produced well-dispersed Ni and Co3O4 nanoparticles. Moreover, the N-doped carbon matrix formed at high temperatures could effectively prevent the aggregation and coalescence, and regulate the electronic configuration of active species. Benefiting from the synergistic effect between the Ni, Co3O4, and NC species, the obtained Ni/Co3O4@NC hybrids exhibited enhanced OER activities and remarkable stability in an alkaline solution with a smaller overpotential of 350 m V to afford 10 m A cm-2, lower Tafel slope of 52.27 m V dec-1, smaller charge-transfer resistance, and higher double-layer capacitance of 25.53 m F cm-2 compared to those of unary Co3O4@NC or Ni@NC metal hybrids. Therefore, this paper presents a facile strategy for designing other heteroatom-doped oxides coupled with ideal carbon materials as electrocatalysts for the OER.
基金financially supported by Shandong Provincial Natural Science Foundation(ZR2017MB059)the Fundamental Research Funds for the Central Universities(18CX05016A)Postgraduate Innovation Project of China University of Petroleum(YCX2019096)。
文摘Developing a facile approach based on transition metal-based Prussian blue(PB)and its analogues(PBAs)with core-shell nanostructure is a very promising choice for constructing cost-effective electrocatalysts for oxygen evolution reaction(OER).Herein,a bimetallic core-shell structure with open cages of Fe-doped CoP(Fe-CoP cage)has been synthesized using CoFe-PBA cage-4 as precursor through a facile hydrothermal method and following phosphating process.Interestingly,there is an open hole in each face center of Fe-CoP cage,which suggests the more exposure of active sites for OER.Electrochemical measurements show that Fe-CoP cage can afford a current density of 10 mA cm-2 at a low overpotential(300 mV),which is better than that of RuO2.The excellent performance can be attributed to Fe doping composition and unique open-cage core-shell structure.The synergistic effect derived from bimetallic active for OER has been discussed.And its great catalytic stability has been evaluated via 1000 cycles of CV and chronoamperometry measurement.This work provides a potential method to design multiple transitional metal-doping electrocatalysts with complex framework derived from PBAs for water splitting.
文摘To meet the current energy needs of society,the highly efficient and continuous production of clean energy is required.One of the key issues facing the green hydrogen evolution is the construction of efficient,low-cost electrocatalysts.Prussian blue(PB),Prussian blue analogs(PBAs),and their derivatives have tunable metal centers and have attracted significant interest as novel photo-and electrochemical catalysts.In this review,recent research progress into PB/PBA-based hollow structures,substrate-supported nanostructures,and their derivatives for green water splitting is discussed and summarized.First,several remarkable examples of nanostructured PB/PBAs supported on substrates(copper foil,carbon cloth,and nickel foam)and hollow structures(such as single-shelled hollow boxes,open hollow cages,and intricate hollow structures(multi-shell and yolk-shell))are discussed in detail,including their synthesis and formation mechanisms.Subsequently,the applications of PB/PBA derivatives((hydr)oxides,phosphides,chalcogenides,and carbides)for water splitting are discussed.Finally,the limitations in this research area and the most urgent challenges are summarized.We hope that this review will stimulate more researchers to develop technologies based on these intricate PB/PBA structures and their derivatives for highly efficient,green water splitting.
基金supported by the Natural Science Foundation of Shandong Province(ZR2017MB059)the Major Program of Shandong Province Natural Science Foundation(ZR2018ZC0639)+2 种基金the National Natural Science Foundation of China(21776314)the Fundamental Research Funds for the Central Universities(18CX05016A)the Postgraduate Innovation Project of China University of Petroleum(YCX2018074)
文摘The ternary cobalt-nickel-iron phosphide nanocubes (P-Co0.9Ni0.9Fe1.2 NCs) with high intrinsic activity, conductivity, defect concentration and optimized ratio have been realized through a facile phosphorization treatment using ternary cobalt-nickel-iron nanocubes of Prussian blue analogs (PBA) as a precursor. The scanning electron microscopy and transmission electron microscopy results show that the P-Co0.9Ni0.9Fe1.2 NCs maintain a cubic structure with a rough surface, implying the rich surface defects as exposed active sites. The thermal phosphorization of the ternary PBA precursor not only provids carbon doping but also leads to the in situ construction of surface defects on the NCs. The carbon doping from the PBA precursor lowers the charge transfer resistance and optimizes the electronic transformation. The synergistic effect among the ternary metal ions and rich defects contributes to the enhanced electrocatalytic performance . The P-Co0.9Ni0.9Fe1.2NCs achieve low overpotentials of -200.7 and 273.1 mV at a current density of 10 mA cm^-2 for the hydrogen evolution reaction and the oxygen evolution reaction, respectively. The potential of overall water splitting reaches 1.52 V at a current density of 10 mA cm^-2. The longterm stability of the electrocatalysts was also evaluated. This work provides a facile method to design efficient transitionmetal- based bifunctional electrocatalysts for overall water splitting.
基金financially supported by Qingdao Science and Technology Benefiting People Special Project (No. 20-3-4-8-nsh)the Fundamental Research Funds for the Central Universities (No.20CX02212A)the Development Fund of State Key Laboratory of Heavy Oil Processing and China University of Petroleum Training Program of Innovation and Entrepreneurship for Undergraduates (No.201910425018)。
文摘Designing the specific crystal phase with better intrinsic activity and more active sites is a very promising strategy for earth-abundant electrocatalysts for oxygen evolution reaction(OER).Herein,a facile two-step method including the high-pressure microwave and the hydrothermal sulfurization is adopted to prepare the WS_(x)/Ni_(9)S_(8) hetero-catalyst on nickel foam(WS_(x)/Ni_(9)S_(8)/NF).Firstly,WO3 polyhedrons homogeneously cover the surface of NF through the high-pressure microwave hydrothermal process.Secondly,WS_(x)/Ni_(9)S_(8) nanoparticles on the surface of NF can be synthesized after a hydrothermal sulfurization,which has been confirmed by scanning electron microscopy(SEM) elemental mapping and high-resolution transmission electron microscopy(HRTEM).The amorphous WSx and Ni9 S8 phase may provide the dual active sites for OER.The electrochemical measurements show that WS_(x)/Ni_(9)S_(8)/NF has superior OER activity with a low overpotential of 320 mV at the current density of 100 mA·cm^(-2),better than those of other samples.The enhanced OER performance may be due to the synergistic catalysis from Ni9 S8 phase and high valence of W.Owing to the stable structure of Ni9 S8,the long-term stability of WS_(x)/Ni_(9)S_(8)/NF for at least 10 h can be obtained.This work may provide a new approach for the doped nickel sulfides crystal phase through high-pressure microwave hydrothermal assistance for OER.
基金financially supported by National Natural Science Foundation of China (52174283)Innovation Fund Project for Graduate Students of China University of Petroleum (East China)(No. CXJJ-2022-23)。
文摘The heterojunction interfacial modulation of FeP is an effective strategy to regulate the intrinsic activity and stability, which is a major challenge to promote the industrial application of FeP-based electrocatalysts. Herein, hollow Fe_(4)C/FeP box with heterojunction interface and carbon armor is successfully synthesized, which can expose numerous active sites and protect catalyst from corrosion. Electrochemical measurements show that Fe_(4)C/FeP exhibits excellent hydrogen evolution activity and stability. It only needs 180 mV to achieve the current density of 10 mA cm^(-2). The high-activity may be due to the synergistic effects of porous framework, graphitic carbon coating and heterojunction structure of FeC and FeP, which optimize the electronic structure and accelerates electron transfer. In addition, the target catalyst can withstand 5000 cycles of CV testing without significant change in properties. The excellent stability may be attributed to the graphitic carbon coating as the armor that can prevent the catalyst from corrosion of electrolyte. This work may provide a synthetic approach to produce a series of carbon-coated and heterojunction structure of transition metal phosphides for water splitting.