Cracks have consistently been a significant challenge limiting the development of additive manufactured nickel-based superalloys.It is essential to investigate the location of cracks and their forming mechanism.This s...Cracks have consistently been a significant challenge limiting the development of additive manufactured nickel-based superalloys.It is essential to investigate the location of cracks and their forming mechanism.This study extensively examines the impact of solidification process,microstructural evolution,and stress concentration on crack initiation during direct energy deposition(DED).The results emphasize that the crack formation is significantly related to large-angle grain boundaries,rapid cooling rates.Cracks caused by large-angle grain boundaries and a fast-cooling rate predominantly appear near the edge of the deposited samples.Liquation cracks are more likely to form near the top of the deposited sample,due to the presence ofγ/γ'eutectics.The secondary dendritic arm and the carbides in the interdendritic regions can obstruct liquid flow during the final stage of solidification,which results in the formation of solidification cracks and voids.This work paves the way to avoid cracks in nickel-based superalloys fabricated by DED,thereby enhancing the performance of superalloys.展开更多
In this study,a kind of Ni-based superalloy specially designed for additive manufacturing(AM)was investigated.Thermo-Calc simulation and differential scanning calorimetry(DSC)analysis were used to determine phases and...In this study,a kind of Ni-based superalloy specially designed for additive manufacturing(AM)was investigated.Thermo-Calc simulation and differential scanning calorimetry(DSC)analysis were used to determine phases and their transformation temperature.Experimental specimens were prepared by laser metal deposition(LMD)and traditional casting method.Microstructure,phase constitution and mechanical properties of the alloy were characterized by scanning electron microscopy(SEM),transmission scanning electron microscopy(TEM),X-ray diffraction(XRD)and tensile tests.The results show that this alloy contains two basic phases,γ/γ’,in addition to these phases,at least two secondary phases may be present,such as MC carbides and Laves phases.Furthermore,the as-deposited alloy has finer dendrite,its mean primary dendrite arm space(PDAS)is about 30-45μm,and the average size ofγ’particles is 100-150 nm.However,the dendrite size of the as-cast alloy is much larger and its PDAS is 300-500μm with secondary and even third dendrite arms.Correspondingly,the alloy displays different tensile behavior with different processing methods,and the as-deposited specimen shows better ultimate tensile stress(1,085.7±51.7 MPa),yield stress(697±19.5 MPa)and elongation(25.8%±2.2%)than that of the as-cast specimen.The differences in mechanical properties of the alloy are due to the different morphology and size of dendrites,γ’,and Laves phase,and the segregation of elements,etc.Such important information would be helpful for alloy application as well as new alloy development.展开更多
Ceramic cores are the key intermediate components of hollow blades for aero-engine.Conventional processes,such as hot-press molding and gel film casting,face difficulties in fabricating complex-structured ceramic core...Ceramic cores are the key intermediate components of hollow blades for aero-engine.Conventional processes,such as hot-press molding and gel film casting,face difficulties in fabricating complex-structured ceramic cores due to the complexity of moulds and long process cycles.Stereolithography 3D printing provides a new idea for the fabrication of complex-structured ceramic cores.The effect of sintering temperature on open porosity,bulk density,weight loss rate,shrinkage rate,flexural strength and microstructure of the Al_(2)O_(3)-based ceramic core doped with 10vol.%polysilazane(PSZ)was studied.The sintering mechanism of PSZ-reinforced ceramic cores was analyzed.Results show that the optimum sintering temperature of PSZ-reinforced ceramic cores is 1,450°C.At this temperature,the open porosity of the ceramic core is 36.60%,bulk density is 2.33 g·cm^(-3),weight loss rate is 22.11%,shrinkage rate along the X,Y,Z directions is 5.72%,5.01%,9.61%,respectively;the flexural strength is 28.794 MPa at 25°C and 13.649 MPa at 1,500°C.Properties of 3D printing PSZ-reinforced ceramic cores can meet the casting requirement of superalloy hollow blades,which is expected to promote the industrial application of 3D printing complex structure ceramic cores.展开更多
Two experimental alloys containing diff erent contents of Ru were investigated to study the eff ect of Ru on the microstructural evolution during long-term thermal exposure.The increase in Ru promoted the formation of...Two experimental alloys containing diff erent contents of Ru were investigated to study the eff ect of Ru on the microstructural evolution during long-term thermal exposure.The increase in Ru promoted the formation of cubical,tiny,and evenγ′phase after full heat treatment.Moreover,the samples after full heat treatment were exposed at 1100℃ for diff erent time.Based on the classical model by Lifshitz,Slyozov,and Wagner,the coarsening ofγ′phase of the alloy containing 2.5 and3.5 wt.%Ru during the long-term aging was controlled by the interface reaction and diff usion,respectively.Theγ/γ′lattice misfi t was more negative with the increment of Ru addition,which induced the formation of stable raftedγ′phase in the alloy containing 3.5 wt.%Ru at the initiation of long-term aging.Besides,the increase in Ru reduced the diff usion coeffi cient,which could restrain theγ′phase coarsening.The lowerγ/γ′lattice misfi t of the alloy containing 2.5 wt.%Ru promoted the interface reaction,which induced the rapid coarsening ofγ′phase.Therefore,the increase in Ru improved the microstructural stability of the alloys.On the other hand,the raise of Ru induced"reverse partitioning"behavior,which was eff ective in suppressing the emergence of the topologically close-packed phase(TCP phase).The TCP phase occasionally occurred in the alloy containing 2.5 wt.%Ru,which was attributed to the high temperature and the supersaturation of theγmatrix.Moreover,the TCP phase was determined asμphase,which had a high concentration of Co,Re,Mo,and W.A sketch map describing the evolution of the TCP phase was also constructed.展开更多
In this study,high density electric current pulse(ECP)treatment was introduced instead of the conventional solution treatment,and theγ′phase was completely dissolved under the ECP treatment within only several milli...In this study,high density electric current pulse(ECP)treatment was introduced instead of the conventional solution treatment,and theγ′phase was completely dissolved under the ECP treatment within only several milliseconds at 1148°C.Due to the extremely short treatment time and high cooling rate,the growth ofγ-phase matrix grain andγ′phase precipitate was effectively retarded.By comparing with the conventional heat process,the grain size of ECP treated sample was controlled to about 15μm,the size of the re-precipitatedγ′phase reduced from 65 to 35 nm,and the number density ofγ′precipitate increased from 1.46×108 to 3.03×108/mm2.The Vickers hardness,ultimate tensile strength and yield strength of the ECP treated sample were significantly improved.According to the theoretical derivation of kinetics,the ECP treatment introduces an extra electrical free energy which promoted the dissolution ofγ′phase.The ECP treatment may provide a new method for solution treatment of the Ni-based superalloy.展开更多
The effect of boron addition(0.010,0.015,and 0.020 wt.%)on the microstructure and mechanical properties of an additively manufactured superalloy was examined.The as-built microstructure was investigated by scanning el...The effect of boron addition(0.010,0.015,and 0.020 wt.%)on the microstructure and mechanical properties of an additively manufactured superalloy was examined.The as-built microstructure was investigated by scanning electron microscopy and transmission electron microscopy.The results demonstrate that boron precipitates as M_(3)B_(2)boride at the grain boundary.The increase in boron content increases the amount ofγ/γ′eutectic and the size and fraction of M_(3)B_(2)boride.Boron creates nanoscale fine borides at grain boundaries,which significantly reinforces grain boundaries.The mechanical property analysis indicated that the addition of boron improved the tensile ductility at 760℃and stress rupture properties at 760℃/780 MPa.However,with the excessive addition of boron,the mechanical property was reduced.展开更多
基金the financial support by the Defense Industrial Technology Development Program(No.JCKY2020130C024)the National Science and Technology Major Project,China(No.Y2019-Ⅶ-0011-0151)the Science Center for Gas Turbine Project(No.P2022-C-Ⅳ-002-001)。
文摘Cracks have consistently been a significant challenge limiting the development of additive manufactured nickel-based superalloys.It is essential to investigate the location of cracks and their forming mechanism.This study extensively examines the impact of solidification process,microstructural evolution,and stress concentration on crack initiation during direct energy deposition(DED).The results emphasize that the crack formation is significantly related to large-angle grain boundaries,rapid cooling rates.Cracks caused by large-angle grain boundaries and a fast-cooling rate predominantly appear near the edge of the deposited samples.Liquation cracks are more likely to form near the top of the deposited sample,due to the presence ofγ/γ'eutectics.The secondary dendritic arm and the carbides in the interdendritic regions can obstruct liquid flow during the final stage of solidification,which results in the formation of solidification cracks and voids.This work paves the way to avoid cracks in nickel-based superalloys fabricated by DED,thereby enhancing the performance of superalloys.
基金the financial supports from the National Science and Technology Major Project,China(No.Y2019-VII-0011-0151)the National Natural Science Foundation of China(No.51771190)。
基金financially supported by the National Science and Technology Major Project(Y2019-Ⅶ-0011-0151)the National Natural Science Foundation of China(No.51771190)。
文摘In this study,a kind of Ni-based superalloy specially designed for additive manufacturing(AM)was investigated.Thermo-Calc simulation and differential scanning calorimetry(DSC)analysis were used to determine phases and their transformation temperature.Experimental specimens were prepared by laser metal deposition(LMD)and traditional casting method.Microstructure,phase constitution and mechanical properties of the alloy were characterized by scanning electron microscopy(SEM),transmission scanning electron microscopy(TEM),X-ray diffraction(XRD)and tensile tests.The results show that this alloy contains two basic phases,γ/γ’,in addition to these phases,at least two secondary phases may be present,such as MC carbides and Laves phases.Furthermore,the as-deposited alloy has finer dendrite,its mean primary dendrite arm space(PDAS)is about 30-45μm,and the average size ofγ’particles is 100-150 nm.However,the dendrite size of the as-cast alloy is much larger and its PDAS is 300-500μm with secondary and even third dendrite arms.Correspondingly,the alloy displays different tensile behavior with different processing methods,and the as-deposited specimen shows better ultimate tensile stress(1,085.7±51.7 MPa),yield stress(697±19.5 MPa)and elongation(25.8%±2.2%)than that of the as-cast specimen.The differences in mechanical properties of the alloy are due to the different morphology and size of dendrites,γ’,and Laves phase,and the segregation of elements,etc.Such important information would be helpful for alloy application as well as new alloy development.
基金This work was financially supported by the National Natural Science Foundation of China(No.U22A20129)National Science and Technology Major Project(No.2017-VI-0002-0072)+2 种基金National Key Research and Development Program of China(No.2018YFB1106600)Fundamental Research Funds for the Central Universities(WK5290000003)Students'Innovation and Entrepreneurship Foundation of USTC(Nos.CY2022G10 and CY2022C24).
文摘Ceramic cores are the key intermediate components of hollow blades for aero-engine.Conventional processes,such as hot-press molding and gel film casting,face difficulties in fabricating complex-structured ceramic cores due to the complexity of moulds and long process cycles.Stereolithography 3D printing provides a new idea for the fabrication of complex-structured ceramic cores.The effect of sintering temperature on open porosity,bulk density,weight loss rate,shrinkage rate,flexural strength and microstructure of the Al_(2)O_(3)-based ceramic core doped with 10vol.%polysilazane(PSZ)was studied.The sintering mechanism of PSZ-reinforced ceramic cores was analyzed.Results show that the optimum sintering temperature of PSZ-reinforced ceramic cores is 1,450°C.At this temperature,the open porosity of the ceramic core is 36.60%,bulk density is 2.33 g·cm^(-3),weight loss rate is 22.11%,shrinkage rate along the X,Y,Z directions is 5.72%,5.01%,9.61%,respectively;the flexural strength is 28.794 MPa at 25°C and 13.649 MPa at 1,500°C.Properties of 3D printing PSZ-reinforced ceramic cores can meet the casting requirement of superalloy hollow blades,which is expected to promote the industrial application of 3D printing complex structure ceramic cores.
基金financially supported by the National Science and Technology Major Project(No.2017-VI-0002–0072)the National Key R&D Program of China(No.2017YFA0700704)+1 种基金the National Natural Science Foundation of China(Nos.51671188,51601192 and 51701210)the Youth Innovation Promotion Association,Chinese Academy of Sciences and State Key Lab of Advanced Metals and Materials Open Fund(No.2018-Z07)。
文摘Two experimental alloys containing diff erent contents of Ru were investigated to study the eff ect of Ru on the microstructural evolution during long-term thermal exposure.The increase in Ru promoted the formation of cubical,tiny,and evenγ′phase after full heat treatment.Moreover,the samples after full heat treatment were exposed at 1100℃ for diff erent time.Based on the classical model by Lifshitz,Slyozov,and Wagner,the coarsening ofγ′phase of the alloy containing 2.5 and3.5 wt.%Ru during the long-term aging was controlled by the interface reaction and diff usion,respectively.Theγ/γ′lattice misfi t was more negative with the increment of Ru addition,which induced the formation of stable raftedγ′phase in the alloy containing 3.5 wt.%Ru at the initiation of long-term aging.Besides,the increase in Ru reduced the diff usion coeffi cient,which could restrain theγ′phase coarsening.The lowerγ/γ′lattice misfi t of the alloy containing 2.5 wt.%Ru promoted the interface reaction,which induced the rapid coarsening ofγ′phase.Therefore,the increase in Ru improved the microstructural stability of the alloys.On the other hand,the raise of Ru induced"reverse partitioning"behavior,which was eff ective in suppressing the emergence of the topologically close-packed phase(TCP phase).The TCP phase occasionally occurred in the alloy containing 2.5 wt.%Ru,which was attributed to the high temperature and the supersaturation of theγmatrix.Moreover,the TCP phase was determined asμphase,which had a high concentration of Co,Re,Mo,and W.A sketch map describing the evolution of the TCP phase was also constructed.
基金This work was financially supported by the National Key R&D Program of China(No.2020YFA0714900)the National Natural Science Foundation of China(Nos.51874023,U1860206,51871221.51671189 and 51971231)+1 种基金the Fundamental Research Funds for the Central Universities(No.FRF-TP-20-02B)the Recruitment Program of Global Experts and the Ministry of Science and Technology of China(Nos.2017YFA0700703 and 2019YFA0705304).
文摘In this study,high density electric current pulse(ECP)treatment was introduced instead of the conventional solution treatment,and theγ′phase was completely dissolved under the ECP treatment within only several milliseconds at 1148°C.Due to the extremely short treatment time and high cooling rate,the growth ofγ-phase matrix grain andγ′phase precipitate was effectively retarded.By comparing with the conventional heat process,the grain size of ECP treated sample was controlled to about 15μm,the size of the re-precipitatedγ′phase reduced from 65 to 35 nm,and the number density ofγ′precipitate increased from 1.46×108 to 3.03×108/mm2.The Vickers hardness,ultimate tensile strength and yield strength of the ECP treated sample were significantly improved.According to the theoretical derivation of kinetics,the ECP treatment introduces an extra electrical free energy which promoted the dissolution ofγ′phase.The ECP treatment may provide a new method for solution treatment of the Ni-based superalloy.
基金The authors are grateful for the financial support provided by the National Key Research and Development Program of China(No.2021YFB3702500)National Science and Technology Major Project of China(Y2019-VII-0011-0151,2019-VII-0019-0161).
文摘The effect of boron addition(0.010,0.015,and 0.020 wt.%)on the microstructure and mechanical properties of an additively manufactured superalloy was examined.The as-built microstructure was investigated by scanning electron microscopy and transmission electron microscopy.The results demonstrate that boron precipitates as M_(3)B_(2)boride at the grain boundary.The increase in boron content increases the amount ofγ/γ′eutectic and the size and fraction of M_(3)B_(2)boride.Boron creates nanoscale fine borides at grain boundaries,which significantly reinforces grain boundaries.The mechanical property analysis indicated that the addition of boron improved the tensile ductility at 760℃and stress rupture properties at 760℃/780 MPa.However,with the excessive addition of boron,the mechanical property was reduced.