We present a comprehensive analysis of the 2021 outburst of MAXI J1803–298 utilizing observations of the Insight-Hard X-ray Modulation Telescope(Insight-HXMT)spanning from the low hard state to the high soft state.Wi...We present a comprehensive analysis of the 2021 outburst of MAXI J1803–298 utilizing observations of the Insight-Hard X-ray Modulation Telescope(Insight-HXMT)spanning from the low hard state to the high soft state.Within the Insight-HXMT data set,compared to the previous work,we identify a more prolonged presence of typeC quasi-periodic oscillations(QPOs)with centroid frequencies ranging from~0.16 to 6.3 Hz,which present correlations with the hardness ratio and the photon index of the Comptonized component.For QPO frequencies less than~2 Hz,the QPO phase lags are hard(photons of 10–19 keV arrive later than those of 1–4 keV),while at higher frequencies,the lags become soft at and above~4 Hz.Furthermore,the spectra in all Insight-HXMT observations consist of a multi-color blackbody component and a Comptonized component,as commonly observed in classical black hole X-ray binaries.We analyze state transitions and the evolution of accretion geometry in this work.The fitted inner disk radius increases abnormally during the low hard state,hypothesized to result from the corona condensing onto the inner disk.Additionally,two significant drops in flux are observed during the soft intermediate state,maybe implying changes in the corona/jet and the disk,respectively.展开更多
Owing to the broad energy coverage of Insight-HXMT in the hard X-ray band,we detected the highest energy of pulsation exceeding 200 keV around the 2017–2018 outburst peak of the first Galactic pulsating ultraluminous...Owing to the broad energy coverage of Insight-HXMT in the hard X-ray band,we detected the highest energy of pulsation exceeding 200 keV around the 2017–2018 outburst peak of the first Galactic pulsating ultraluminous X-ray source (PULX) Swift J0243.6+6124,which is the highest energy detected from PULXs to date.We also obtained the highest energy of pulsation of every exposure during the outburst in 2017–2018,and found the highest energy is roughly positively correlated with luminosity.Using our newly developed method,we identified the critical luminosity being 4×10^(38)erg s^(-1) when the main peaks of the low and high energy pulse profiles became aligned,which separates the fan-beam dominated and pencil-beam dominated accretion regimes.Above the critical luminosity,the phase of the main peak shifted gradually from 0.5 to 0.8 until the outburst peak in al energy bands is reached,which is in agreement with the phase shift found previously at low energies.Our result is consistent with what is derived from spectral analysis.展开更多
In October 2022,the magnetar SGR J1935+2154 entered the active outburst state.During the episode,the InsightHXMT satellite carried out a long observation that lasted for 20 days.More than 300 bursts were detected,and ...In October 2022,the magnetar SGR J1935+2154 entered the active outburst state.During the episode,the InsightHXMT satellite carried out a long observation that lasted for 20 days.More than 300 bursts were detected,and a certain amount of persistent radiation signals were also accumulated.This paper mainly introduces the results of persistent radiation profile folding and period search based on Insight-HXMT data.At the same time,the burst phase distribution characteristics,spectral lag results of burst,the spectral characteristics of zero-lag bursts and the time-resolved spectral evolution characteristics of high-flux bursts are reported.We found that there is no significant delay feature during different energy bands for the bursts of SGR J1935+2154.The observed zero-lag burst does not have a unique spectrum.The time-resolved spectrum of the individual burst has consistent spectral types and spectral parameters at different time periods of the burst.We also find that the burst number phase distribution and the burst photon phase distribution have the same tendency to concentrate in specific regions of the persistent emission profile.展开更多
We report on X-ray emission properties of the Crab pulsar(PSR B0531+21) using observations by Insight-HXMT during its first year after launch. We obtained high signal-to-noise profiles in the X-ray energy band 11–250...We report on X-ray emission properties of the Crab pulsar(PSR B0531+21) using observations by Insight-HXMT during its first year after launch. We obtained high signal-to-noise profiles in the X-ray energy band 11–250 keV. We have confirmed an increase in the flux ratio of the second peak over the main peak with increasing energy, consistent with other missions. The separation of the two peaks shows no significant trend with increasing energy. The phase-averaged spectrum, fitted by a logpar model, and the phase-resolved spectra of the Crab pulsar, fitted by a powerlaw in the different energy bands of HXMT, are consistent with RXTE and NuSTAR in that photon indices evolve as a function of phase as well as a function of energy, contributing to a broadband modeling.展开更多
On 2020 April 27,the soft gamma-ray repeater SGR J1935+2154 entered its intense outburst episode again.Insight-HXMT carried out about one month observation of the source.A total number of 75 bursts were detected durin...On 2020 April 27,the soft gamma-ray repeater SGR J1935+2154 entered its intense outburst episode again.Insight-HXMT carried out about one month observation of the source.A total number of 75 bursts were detected during this activity episode by Insight-HXMT,and persistent emission data were also accumulated.We report on the spin period search result and the phase distribution of burst start times and burst photon arrival times of the Insight-HXMT high energy detectors and Fermi/Gamma-ray Burst Monitor(GBM).We find that the distribution of burst start times is uniform within its spin phase for both Insight-HXMT and Fermi/GBM observations,whereas the phase distribution of burst photons is related to the type of a burst’s energy spectrum.The bursts with the same spectrum have different distribution characteristics in the initial and decay episodes for the activity of magnetar SGR J1935+2154.展开更多
We present X-ray spectral analyses of the low-mass X-ray binary Cir X-1 during X-ray dips, using the Rossi X-ray Timing Explorer (RXTE) data. Each dip was divided into several segments, and the spectrum of each segm...We present X-ray spectral analyses of the low-mass X-ray binary Cir X-1 during X-ray dips, using the Rossi X-ray Timing Explorer (RXTE) data. Each dip was divided into several segments, and the spectrum of each segment was fitted with a three-component blackbody model, in which the first two components are affected by partial covering and the third one is unaffected. A Gaussian emission line is also included in the spectral model to represent the Fe Kα line at - 6.4 keV. The fitted temperatures of the two partially covered components are about 2 keV and 1 keV, while the uncovered component has a temperature of -0.5-0.6 keV. The equivalent blackbody emission radius of the hottest component is the smallest and that of the coolest component is the largest. During the dips the fluxes of the two hot components are linearly correlated, while that of the third component does not show any significant variation. The Fe line flux remains constant, within the errors, during the short dips. However, during the long dips the line flux varies significantly and is positively correlated with the fluxes of the two hot components. These results suggest; (1) that the temperature of the X-ray emitting region decreases with radius, (2) that the Fe Kα line emitting region is close to the hot continuum emitting region, and (3) that the size of the Fe line emitting region is larger than that of the obscuring matter causing the short dips but smaller than the region of that causing the long dips.展开更多
We present the observational results from a detailed timing analysis of the black hole candidate EXO 1846-031 during its outburst in 2019 with the observations of Insight-HXMT,NICER and MAXI.This outburst can be class...We present the observational results from a detailed timing analysis of the black hole candidate EXO 1846-031 during its outburst in 2019 with the observations of Insight-HXMT,NICER and MAXI.This outburst can be classified roughly into four different states.Type-C quasi-periodic oscillations(QPOs)observed by NICER(about 0.1-6 Hz)and Insight-HXMT(about 0.7-8 Hz)are also reported in this work.Meanwhile,we study various physical quantities related to QPO frequency.The QPO rms-frequency relationship in the energy band 1-10 keV indicates that there is a turning pointing in frequency around2 Hz,which is similar to that of GRS 1915+105.A possible hypothesis for the relationship above may be related to the inclination of the source,which may require a high inclination to explain it.The relationships between QPO frequency and QPO rms,hardness,total fractional rms and count rate have also been found in other transient sources,which can indicate that the origin of type-C QPOs is non-thermal.展开更多
The LE is the low energy telescope that is carried on Insight-HXMT.It uses swept charge devices(SCDs)to detect soft X-ray photons.LE’s time response is caused by the structure of the SCDs.With theoretical analysis an...The LE is the low energy telescope that is carried on Insight-HXMT.It uses swept charge devices(SCDs)to detect soft X-ray photons.LE’s time response is caused by the structure of the SCDs.With theoretical analysis and Monte Carlo simulations we discuss the influence of LE time response(LTR)on the timing analysis from three aspects:the power spectral density,the pulse profile and the time lag.After the LTR,the value of power spectral density monotonously decreases with the increasing frequency.The power spectral density of a sinusoidal signal reduces by a half at frequency 536 Hz.The corresponding frequency for quasi-periodic oscillation(QPO)signals is 458 Hz.The root mean square(RMS)of QPOs holds a similar behaviour.After the LTR,the centroid frequency and full width at half maxima(FWHM)of QPOs signals do not change.The LTR reduces the RMS of pulse profiles and shifts the pulse phase.In the time domain,the LTR only reduces the peak value of the cross-correlation function while it does not change the peak position;thus it will not affect the result of the time lag.When considering the time lag obtained from two instruments and one among them is LE,a 1.18 ms lag is expected caused by the LTR.The time lag calculated in the frequency domain is the same as that in the time domain.展开更多
Purpose We present the five-year in-orbit background evolution of Insight-HXMT since the launch,as well as the effects of the background model in data analysis.Methods The backgrounds of the three main payloads,i.e.,l...Purpose We present the five-year in-orbit background evolution of Insight-HXMT since the launch,as well as the effects of the background model in data analysis.Methods The backgrounds of the three main payloads,i.e.,low-energy telescope,medium-energy telescope,and high-energy telescope,are described.The evolution of the background over time is obtained by simply comparing the background in every year during the in-orbit operation of Insight-HXMT.Results The major observational characteristics of the Insight-HXMT in-orbit background are presented,including the light curve,spectrum,geographical distribution,and long-term evolution.The systematic error in background estimation is investigated for every year.Conclusion The observational characteristics of the five-year in-orbit background are consistent with our knowledge of the satellite design and the space environment,and the background model is still valid for the latest observations of Insight-HXMT.展开更多
基金supported by the National Key R&D Program of China(2021YFA0718500)the National Natural Science Foundation of China(NSFC,Grant No.12133007)partially supported by the International Partnership Program of Chinese Academy of Sciences(Grant No.113111KYSB20190020)。
文摘We present a comprehensive analysis of the 2021 outburst of MAXI J1803–298 utilizing observations of the Insight-Hard X-ray Modulation Telescope(Insight-HXMT)spanning from the low hard state to the high soft state.Within the Insight-HXMT data set,compared to the previous work,we identify a more prolonged presence of typeC quasi-periodic oscillations(QPOs)with centroid frequencies ranging from~0.16 to 6.3 Hz,which present correlations with the hardness ratio and the photon index of the Comptonized component.For QPO frequencies less than~2 Hz,the QPO phase lags are hard(photons of 10–19 keV arrive later than those of 1–4 keV),while at higher frequencies,the lags become soft at and above~4 Hz.Furthermore,the spectra in all Insight-HXMT observations consist of a multi-color blackbody component and a Comptonized component,as commonly observed in classical black hole X-ray binaries.We analyze state transitions and the evolution of accretion geometry in this work.The fitted inner disk radius increases abnormally during the low hard state,hypothesized to result from the corona condensing onto the inner disk.Additionally,two significant drops in flux are observed during the soft intermediate state,maybe implying changes in the corona/jet and the disk,respectively.
基金project funded by China National Space Administration(CNSA)the Chinese Academy of Sciences(CAS)+2 种基金supported by the National Key R&D Program of China(2021YFA0718500 and 2023YFE0101200)from the Minister of Science and Technology of China(MOST)supports from the National Natural Science Foundation of China under grants 12373051 and 12333007supported by International Partnership Program of Chinese Academy of Sciences(grant No.113111KYSB20190020)。
文摘Owing to the broad energy coverage of Insight-HXMT in the hard X-ray band,we detected the highest energy of pulsation exceeding 200 keV around the 2017–2018 outburst peak of the first Galactic pulsating ultraluminous X-ray source (PULX) Swift J0243.6+6124,which is the highest energy detected from PULXs to date.We also obtained the highest energy of pulsation of every exposure during the outburst in 2017–2018,and found the highest energy is roughly positively correlated with luminosity.Using our newly developed method,we identified the critical luminosity being 4×10^(38)erg s^(-1) when the main peaks of the low and high energy pulse profiles became aligned,which separates the fan-beam dominated and pencil-beam dominated accretion regimes.Above the critical luminosity,the phase of the main peak shifted gradually from 0.5 to 0.8 until the outburst peak in al energy bands is reached,which is in agreement with the phase shift found previously at low energies.Our result is consistent with what is derived from spectral analysis.
基金supported by International Partnership Program of Chinese Academy of Sciences(grant No.113111KYSB20190020)by the National Key R&D Program of China(2021YFA0718500)from the Minister of Science and Technology of China(MOST)supports from the National Natural Science Foundation of China under Grants U1938109,12333007,12173103,U2038101,U1938103,12333007,12303045,U1938201 and 11733009。
文摘In October 2022,the magnetar SGR J1935+2154 entered the active outburst state.During the episode,the InsightHXMT satellite carried out a long observation that lasted for 20 days.More than 300 bursts were detected,and a certain amount of persistent radiation signals were also accumulated.This paper mainly introduces the results of persistent radiation profile folding and period search based on Insight-HXMT data.At the same time,the burst phase distribution characteristics,spectral lag results of burst,the spectral characteristics of zero-lag bursts and the time-resolved spectral evolution characteristics of high-flux bursts are reported.We found that there is no significant delay feature during different energy bands for the bursts of SGR J1935+2154.The observed zero-lag burst does not have a unique spectrum.The time-resolved spectrum of the individual burst has consistent spectral types and spectral parameters at different time periods of the burst.We also find that the burst number phase distribution and the burst photon phase distribution have the same tendency to concentrate in specific regions of the persistent emission profile.
基金supported by the National Key R&D Program of China (2016YFA0400800)the National Natural Science Foundation of China (Grant Nos. 11503027, 11673023, U1838201 and U1838104)the HXMT mission, a project funded by the China National Space Administration (CNSA) and the Chinese Academy of Sciences (CAS)
文摘We report on X-ray emission properties of the Crab pulsar(PSR B0531+21) using observations by Insight-HXMT during its first year after launch. We obtained high signal-to-noise profiles in the X-ray energy band 11–250 keV. We have confirmed an increase in the flux ratio of the second peak over the main peak with increasing energy, consistent with other missions. The separation of the two peaks shows no significant trend with increasing energy. The phase-averaged spectrum, fitted by a logpar model, and the phase-resolved spectra of the Crab pulsar, fitted by a powerlaw in the different energy bands of HXMT, are consistent with RXTE and NuSTAR in that photon indices evolve as a function of phase as well as a function of energy, contributing to a broadband modeling.
基金partially supported by International Partnership Program of Chinese Academy of Sciences(Grant No.113111KYSB20190020)the National Key R&D Program of China(2021YFA0718500)from the Minister of Science and Technology of China(MOST)The authors thank supports from the National Natural Science Foundation of China under Grants U1938109,U1838201,U1838202,12173103,U2038101,U1938103,12133007,U1938201 and 11733009。
文摘On 2020 April 27,the soft gamma-ray repeater SGR J1935+2154 entered its intense outburst episode again.Insight-HXMT carried out about one month observation of the source.A total number of 75 bursts were detected during this activity episode by Insight-HXMT,and persistent emission data were also accumulated.We report on the spin period search result and the phase distribution of burst start times and burst photon arrival times of the Insight-HXMT high energy detectors and Fermi/Gamma-ray Burst Monitor(GBM).We find that the distribution of burst start times is uniform within its spin phase for both Insight-HXMT and Fermi/GBM observations,whereas the phase distribution of burst photons is related to the type of a burst’s energy spectrum.The bursts with the same spectrum have different distribution characteristics in the initial and decay episodes for the activity of magnetar SGR J1935+2154.
基金Supported by the National Natural Science Foundation of China.
文摘We present X-ray spectral analyses of the low-mass X-ray binary Cir X-1 during X-ray dips, using the Rossi X-ray Timing Explorer (RXTE) data. Each dip was divided into several segments, and the spectrum of each segment was fitted with a three-component blackbody model, in which the first two components are affected by partial covering and the third one is unaffected. A Gaussian emission line is also included in the spectral model to represent the Fe Kα line at - 6.4 keV. The fitted temperatures of the two partially covered components are about 2 keV and 1 keV, while the uncovered component has a temperature of -0.5-0.6 keV. The equivalent blackbody emission radius of the hottest component is the smallest and that of the coolest component is the largest. During the dips the fluxes of the two hot components are linearly correlated, while that of the third component does not show any significant variation. The Fe line flux remains constant, within the errors, during the short dips. However, during the long dips the line flux varies significantly and is positively correlated with the fluxes of the two hot components. These results suggest; (1) that the temperature of the X-ray emitting region decreases with radius, (2) that the Fe Kα line emitting region is close to the hot continuum emitting region, and (3) that the size of the Fe line emitting region is larger than that of the obscuring matter causing the short dips but smaller than the region of that causing the long dips.
基金the HXMT mission,a project funded by China National Space Administration(CNSA)and the Chinese Academy of Sciences(CAS)supported by the National Key R&D Program of China(2016YFA0400800)the National Natural Science Foundation of China(Grant Nos.11673023,U1838201,U1838115,U1838111,U1838202,11733009 and U1838108)。
文摘We present the observational results from a detailed timing analysis of the black hole candidate EXO 1846-031 during its outburst in 2019 with the observations of Insight-HXMT,NICER and MAXI.This outburst can be classified roughly into four different states.Type-C quasi-periodic oscillations(QPOs)observed by NICER(about 0.1-6 Hz)and Insight-HXMT(about 0.7-8 Hz)are also reported in this work.Meanwhile,we study various physical quantities related to QPO frequency.The QPO rms-frequency relationship in the energy band 1-10 keV indicates that there is a turning pointing in frequency around2 Hz,which is similar to that of GRS 1915+105.A possible hypothesis for the relationship above may be related to the inclination of the source,which may require a high inclination to explain it.The relationships between QPO frequency and QPO rms,hardness,total fractional rms and count rate have also been found in other transient sources,which can indicate that the origin of type-C QPOs is non-thermal.
基金the National Key R&D Program of China(2016YFA0400800)the National Natural Science Foundation of China(Grant Nos.U1838201,U1838202,U1838101 and U1938109)the Insight-HXMT mission,a project funded by China National Space Administration(CNSA)and the Chinese Academy of Sciences(CAS)。
文摘The LE is the low energy telescope that is carried on Insight-HXMT.It uses swept charge devices(SCDs)to detect soft X-ray photons.LE’s time response is caused by the structure of the SCDs.With theoretical analysis and Monte Carlo simulations we discuss the influence of LE time response(LTR)on the timing analysis from three aspects:the power spectral density,the pulse profile and the time lag.After the LTR,the value of power spectral density monotonously decreases with the increasing frequency.The power spectral density of a sinusoidal signal reduces by a half at frequency 536 Hz.The corresponding frequency for quasi-periodic oscillation(QPO)signals is 458 Hz.The root mean square(RMS)of QPOs holds a similar behaviour.After the LTR,the centroid frequency and full width at half maxima(FWHM)of QPOs signals do not change.The LTR reduces the RMS of pulse profiles and shifts the pulse phase.In the time domain,the LTR only reduces the peak value of the cross-correlation function while it does not change the peak position;thus it will not affect the result of the time lag.When considering the time lag obtained from two instruments and one among them is LE,a 1.18 ms lag is expected caused by the LTR.The time lag calculated in the frequency domain is the same as that in the time domain.
基金supports from the National Key R&D Program of China(2021YFA0718500)the National Natural Science Foundation of China under Grants Nos.U1838202 and U1838201This work was partially supported by International Partnership Program of Chinese Academy of Sciences(Grant No.113111KYSB20190020).
文摘Purpose We present the five-year in-orbit background evolution of Insight-HXMT since the launch,as well as the effects of the background model in data analysis.Methods The backgrounds of the three main payloads,i.e.,low-energy telescope,medium-energy telescope,and high-energy telescope,are described.The evolution of the background over time is obtained by simply comparing the background in every year during the in-orbit operation of Insight-HXMT.Results The major observational characteristics of the Insight-HXMT in-orbit background are presented,including the light curve,spectrum,geographical distribution,and long-term evolution.The systematic error in background estimation is investigated for every year.Conclusion The observational characteristics of the five-year in-orbit background are consistent with our knowledge of the satellite design and the space environment,and the background model is still valid for the latest observations of Insight-HXMT.