Organic photovoltaic(OPV)cells have demonstrated remarkable performance in small,spin-coated areas.Nevertheless significant challenges persist in the form of large efficiency losses due to the fact that the ideal morp...Organic photovoltaic(OPV)cells have demonstrated remarkable performance in small,spin-coated areas.Nevertheless significant challenges persist in the form of large efficiency losses due to the fact that the ideal morphology cannot be preserved in the transition of small-area cells to large-scale panels.Herein,the ternary strategy of incorporating the third component FTCC-Br into the active layer of PB2:BTP-eC9 is employed to improve absorption response,optimize morphology,and reduce charge recombination,leading to a power conversion efficiency(PCE)of 19.5%(certified as 19.1%by the National Institute of Metrology,China).Moreover,the addition of FTCC-Br can control the aggregation kinetics of the active layer during the film formation process,transferring the optimal morphology to the blade-coated large-area films.Based on the highly efficient ternary bulk heterojunction,the 50 cm^(2) OPVmodules exhibited a PCE of 15.2%with respect to the active area.Importantly,the ternary OPV cells retain 80%of its initial PCE after 4000 h under continuous illumination.Our work demonstrates that the addition of a third component has the potential to improve the efficiency and stability of large-area organic solar cells.展开更多
Charge generation,a critical process in the operation of organic solar cell(OSC),requires thorough investigation in an ultrafast perspective.This work demonstrates that the utilization of alloy model for the non-fulle...Charge generation,a critical process in the operation of organic solar cell(OSC),requires thorough investigation in an ultrafast perspective.This work demonstrates that the utilization of alloy model for the non-fullerene acceptor(NFA)component can regulate the crystallization properties of active layer films,which in turn affects exciton diffusion and hole transfer(HT),ultimately influencing the charge generation process.By incorporating BTP-eC7 as a third component,without expanding absorption range or changing molecular energy levels but regulating the ultrafast exciton diffusion and HT processes,the power conversion efficiency(PCE)of the optimized PM6:BTP-eC9:BTP-eC7 based ternary OSC is improved from 17.30%to 17.83%,primarily due to the enhancement of short-circuit current density(JSC).Additionally,the introduction of BTP-eC7 also reduces the trap state density in the photoactive layer which helps to reduce the loss of JSC.This study introduces a novel approach for employing ternary alloy models by incorporating dual acceptors with similar structures,and elucidates the underlying mechanism of charge generation and JSC in ternary OSCs.展开更多
Dimeric fused-ring electron acceptors(DFREAs)have attracted much attention due to the combined advantages of their monomeric and polymeric acceptors,including a well-defined molecular structure,excellent repeatability...Dimeric fused-ring electron acceptors(DFREAs)have attracted much attention due to the combined advantages of their monomeric and polymeric acceptors,including a well-defined molecular structure,excellent repeatability,and stable morphology.However,the additionally introduced single-bonds during dimerization may result in a twisted backbone of DFREAs,which is detrimental to intermolecular packing and charge transport.Herein,three DFREAs are designed and synthesized,in which DFREA conformations were systematically tuned via adjusting the intensities of intramolecular noncovalent interactions(INIs)to achieve high-performance organic solar cells(OSCs).Theoretical and experimental results show that the gradual introduction of S…F INIs can continuously improve molecular planarity and rigidity,resulting in reduced reorganization energies,ordered packing mode,and enhanced crystallization of DFREAs.Benefiting from the incorporation of fourfold S…F INIs,DYF-TF-based binary OSCs show a record high efficiency of 18.26%with an extremely low energy loss(0.493 eV)for DFREAbased OSCs.In addition,DYF-TF-based OSCs exhibited good long-term stability with a T_(80%)lifetime of 2681 h,and the power conversion efficiency of the DYF-TF-based ternary device is further enhanced to 18.73%.This contribution demonstrates the great potential of the INIs strategy in achieving excellent DFREAs materials.展开更多
基金the National Natural Science Foundation of China(NSFC,grant nos.21835006 and 51961135103)the Bureau of International Cooperation Chinese Academy of Sciences(grant no.121111KYSB20200043)+1 种基金the financial support from China Postdoctoral Science Foundation(grant no.2022M723199)the Beijing National Laboratory for Molecular Sciences Junior Fellow.
文摘Organic photovoltaic(OPV)cells have demonstrated remarkable performance in small,spin-coated areas.Nevertheless significant challenges persist in the form of large efficiency losses due to the fact that the ideal morphology cannot be preserved in the transition of small-area cells to large-scale panels.Herein,the ternary strategy of incorporating the third component FTCC-Br into the active layer of PB2:BTP-eC9 is employed to improve absorption response,optimize morphology,and reduce charge recombination,leading to a power conversion efficiency(PCE)of 19.5%(certified as 19.1%by the National Institute of Metrology,China).Moreover,the addition of FTCC-Br can control the aggregation kinetics of the active layer during the film formation process,transferring the optimal morphology to the blade-coated large-area films.Based on the highly efficient ternary bulk heterojunction,the 50 cm^(2) OPVmodules exhibited a PCE of 15.2%with respect to the active area.Importantly,the ternary OPV cells retain 80%of its initial PCE after 4000 h under continuous illumination.Our work demonstrates that the addition of a third component has the potential to improve the efficiency and stability of large-area organic solar cells.
基金supported by the National Natural Science Foundation of China(52073162)Major Program of Natural Science Foundation of Shandong Province(ZR2019ZD43)+1 种基金X.T.H also acknowledges support from the Taishan Scholars Program(tstp20230610)ARC Centre of Excellence in Exciton Science(CE170100026).
文摘Charge generation,a critical process in the operation of organic solar cell(OSC),requires thorough investigation in an ultrafast perspective.This work demonstrates that the utilization of alloy model for the non-fullerene acceptor(NFA)component can regulate the crystallization properties of active layer films,which in turn affects exciton diffusion and hole transfer(HT),ultimately influencing the charge generation process.By incorporating BTP-eC7 as a third component,without expanding absorption range or changing molecular energy levels but regulating the ultrafast exciton diffusion and HT processes,the power conversion efficiency(PCE)of the optimized PM6:BTP-eC9:BTP-eC7 based ternary OSC is improved from 17.30%to 17.83%,primarily due to the enhancement of short-circuit current density(JSC).Additionally,the introduction of BTP-eC7 also reduces the trap state density in the photoactive layer which helps to reduce the loss of JSC.This study introduces a novel approach for employing ternary alloy models by incorporating dual acceptors with similar structures,and elucidates the underlying mechanism of charge generation and JSC in ternary OSCs.
基金support from the National Nature Science Foundation of China(grant nos.51925306,52103352,52120105006)National Key R&D Program of China(grant no.2018FYA 0305800)+3 种基金Key Research Program of Chinese Academy of Sciences(grant no.XDPB08-2)the Strategic Priority Research Program of Chinese Academy of Sciences(grant no.XDB28000000)the Youth Innovation Promotion Association of Chinese Academy of Sciences(grant no.2022165)the Fundamental Research Funds for the Central Universities.DFT results described in this article were obtained from the National Supercomputing Center in Shenzhen(Shenzhen Cloud Computing Center).
文摘Dimeric fused-ring electron acceptors(DFREAs)have attracted much attention due to the combined advantages of their monomeric and polymeric acceptors,including a well-defined molecular structure,excellent repeatability,and stable morphology.However,the additionally introduced single-bonds during dimerization may result in a twisted backbone of DFREAs,which is detrimental to intermolecular packing and charge transport.Herein,three DFREAs are designed and synthesized,in which DFREA conformations were systematically tuned via adjusting the intensities of intramolecular noncovalent interactions(INIs)to achieve high-performance organic solar cells(OSCs).Theoretical and experimental results show that the gradual introduction of S…F INIs can continuously improve molecular planarity and rigidity,resulting in reduced reorganization energies,ordered packing mode,and enhanced crystallization of DFREAs.Benefiting from the incorporation of fourfold S…F INIs,DYF-TF-based binary OSCs show a record high efficiency of 18.26%with an extremely low energy loss(0.493 eV)for DFREAbased OSCs.In addition,DYF-TF-based OSCs exhibited good long-term stability with a T_(80%)lifetime of 2681 h,and the power conversion efficiency of the DYF-TF-based ternary device is further enhanced to 18.73%.This contribution demonstrates the great potential of the INIs strategy in achieving excellent DFREAs materials.