期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Analysis of Fluid-Structure Interaction during Fracturing with Supercritical CO_(2)
1
作者 jiarui cheng Yirong Yang +2 位作者 Sai Ye Yucheng Luo Bilian Peng 《Fluid Dynamics & Materials Processing》 EI 2024年第12期2887-2906,共20页
During the implementation of CO_(2) fracturing for oil and gas development,the force transfer effect caused by the unsteady flow of high-pressure CO_(2) fluid can lead to forced vibration of the tubing and ensuing str... During the implementation of CO_(2) fracturing for oil and gas development,the force transfer effect caused by the unsteady flow of high-pressure CO_(2) fluid can lead to forced vibration of the tubing and ensuing structural fatigue.In this study,a forced vibration analysis of tubing under CO_(2) fracturing conditions is carried out by taking into account the fluid-structure coupling and related interaction forces by means of the method of characteristics(MOC).The results show that for every 1 m^(3)/min increase in pumping displacement,the fluid flow rate increases up to 3.67 m/s.The flow pressure in the pipe tends to be consistent with the pumping pressure at the initial stage and then decreases with an increase in the pump starting time.When the pumping pressure increases by 10 MPa,the additional stress in the tubing increases by 11.8%,and the peak value of the additional stress at the bottom of the well is the largest.The temperature in the tubing grows with well depth,which causes a phase change in CO_(2) due to heat absorption.At this time the pressure in the tubing decreases,the fluid flow rate increases by about 1.12 m/s,and the additional stress grows by about 1.5 MPa. 展开更多
关键词 Supercritical CO_(2) FRACTURING fluid-structure interaction method of characteristics(MOC) vibration characteristics
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部