Objective:To study the therapeutic effect of the Extract of Wuwei Xiaodu Drink on spinal infection and provide the scientific basis for clinical application.Methods:By establishing a rabbit model of spinal infection,t...Objective:To study the therapeutic effect of the Extract of Wuwei Xiaodu Drink on spinal infection and provide the scientific basis for clinical application.Methods:By establishing a rabbit model of spinal infection,this paper observed and analyzed the changes in body mass before and after the intervention and the comparison of inflammation-related factors and blood leukocyte counts among the three groups.Results:There was a significant difference in the changes in body mass of rabbits before and after intervention in the experimental group,control group and blank group(P<0.05);there was no statistically significant difference in calcitoninogen,C-reactive protein and routine blood leukocyte counts between the experimental group and the control group(P>0.05),and there was a statistically significant difference in calcitoninogen,C-reactive protein and routine blood leukocyte counts between the experimental group and the blank group(P<0.05).Conclusion:The Extract of Wuwei Xiaodu Drink can play a protective role by regulating the level of inflammatory factors in blood routine leukocyte count and reducing the inflammatory reaction in the spinal cord injury area.展开更多
Integrative cultivation practices(ICPs)are essential for enhancing cereal yield and resource use efficiency.However,the effects of ICP on the rhizosphere environment and roots of paddy rice are still poorly understood...Integrative cultivation practices(ICPs)are essential for enhancing cereal yield and resource use efficiency.However,the effects of ICP on the rhizosphere environment and roots of paddy rice are still poorly understood.In this study,four rice varieties were produced in the field.Each variety was treated with six different cultivation techniques,including zero nitrogen application(0 N),local farmers’practice(LFP),nitrogen reduction(NR),and three progressive ICP techniques comprised of enhanced fertilizer N practice and increased plant density(ICP1),a treatment similar to ICP1 but with alternate wetting and moderate drying instead of continuous flooding(ICP2),and the same practices as ICP2 with the application of organic fertilizer(ICP3).The ICPs had greater grain production and nitrogen use efficiency than the other three methods.Root length,dry weight,root diameter,activity of root oxidation,root bleeding rate,zeatin and zeatin riboside compositions,and total organic acids in root exudates were elevated with the introduction of the successive cultivation practices.ICPs enhanced nitrate nitrogen,the activities of urease and invertase,and the diversity of microbes(bacteria)in rhizosphere and non-rhizosphere soil,while reducing the ammonium nitrogen content.The nutrient contents(ammonium nitrogen,total nitrogen,total potassium,total phosphorus,nitrate,and available phosphorus)and urease activity in rhizosphere soil were reduced in all treatments in comparison with the non-rhizosphere soil,but the invertase activity and bacterial diversity were greater.The main root morphology and physiology,and the ammonium nitrogen contents in rhizosphere soil at the primary stages were closely correlated with grain yield and internal nitrogen use efficiency.These findings suggest that the coordinated enhancement of the root system and the environment of the rhizosphere under integrative cultivation approaches may lead to higher rice production.展开更多
Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we...Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we present extensive VLC channel measurement campaigns in indoor environments,i.e.,an office and a corridor.Based on the measured data,the large-scale fading characteristics and multipath-related characteristics,including omnidirectional optical path loss(OPL),K-factor,power angular spectrum(PAS),angle spread(AS),and clustering characteristics,are analyzed and modeled through a statistical method.Based on the extracted statistics of the above-mentioned channel characteristics,we propose a statistical spatial channel model(SSCM)capable of modeling multipath in the spatial domain.Furthermore,the simulated statistics of the proposed model are compared with the measured statistics.For instance,in the office,the simulated path loss exponent(PLE)and the measured PLE are 1.96and 1.97,respectively.And,the simulated medians of AS and measured medians of AS are 25.94°and 24.84°,respectively.Generally,the fact that the simulated results fit well with measured results has demonstrated the accuracy of our SSCM.展开更多
The wearable exoskeleton system is a typical strongly coupled human-robotic system.Human-robotic is the environment for each other.The two support each other and compete with each other.Achieving high human-robotic co...The wearable exoskeleton system is a typical strongly coupled human-robotic system.Human-robotic is the environment for each other.The two support each other and compete with each other.Achieving high human-robotic compatibility is the most critical technology for wearable systems.Full structural compatibility can improve the intrinsic safety of the exoskeleton,and precise intention understanding and motion control can improve the comfort of the exoskeleton.This paper first designs a physiologically functional bionic lower limb exoskeleton based on the study of bone and joint functional anatomy and analyzes the drive mapping model of the dual closedloop four-link knee joint.Secondly,an exoskeleton dual closed-loop controller composed of a position inner loop and a force outer loop is designed.The inner loop of the controller adopts the PID control algorithm,and the outer loop adopts the adaptive admittance control algorithm based on human-robot interaction force(HRI).The controller can adaptively adjust the admittance parameters according to the HRI to respond to dynamic changes in the mechanical and physical parameters of the human-robot system,thereby improving control compliance and the wearing comfort of the exoskeleton system.Finally,we built a joint simulation experiment platform based on SolidWorks/Simulink to conduct virtual prototype simulation experiments and recruited volunteers to wear rehabilitation exoskeletons to conduct related control experiments.Experimental results show that the designed physiologically functional bionic exoskeleton and adaptive admittance controller can significantly improve the accuracy of human-robotic joint motion tracking,effectively reducing human-machine interaction forces and improving the comfort and safety of the wearer.This paper proposes a dual-closed loop four-link knee joint exoskeleton and a variable admittance control method based on HRI,which provides a new method for the design and control of exoskeletons with high compatibility.展开更多
A Diesel Particulate Filter(DPF)is a critical device for diesel engine exhaust products treatment.When using active-regeneration purification methods,on the one hand,a spatially irregular gas flow can produce relative...A Diesel Particulate Filter(DPF)is a critical device for diesel engine exhaust products treatment.When using active-regeneration purification methods,on the one hand,a spatially irregular gas flow can produce relatively high local temperatures,potentially resulting in damage to the carrier;On the other hand,the internal temperature field can also undergo significant changes contributing to increase this risk.This study explores the gas flow uniformity in a DPF carrier and the related temperature behavior under drop-to-idle(DTI)condition by means of bench tests.It is shown that the considered silicon carbide carrier exhibits good flow uniformity,with a temperature deviation of no more than 2%with respect to the same radius measurement point at the outlet during the regeneration stage.In the DTI test,the temperature is relatively high within r/2 near the outlet end,where the maximum temperature peak occurs,and the maximum radial temperature gradient is located between r/2 and the edge.Both these quantities grow as the soot load increases,thereby making the risk of carrier burnout greater.Finally,it is shown that the soot load limit of the silicon carbide DPF can be extended to 11 g/L,which reduces the frequency of active regeneration by approximately 40%compared to a cordierite DPF.展开更多
Variations in the nutrients and water that plants require for metabolism,development,and the maintenance of cellular homeostasis are the main causes of abiotic stress in plants.It has,however,hardly ever been studied ...Variations in the nutrients and water that plants require for metabolism,development,and the maintenance of cellular homeostasis are the main causes of abiotic stress in plants.It has,however,hardly ever been studied how these transporter proteins,such as aquaporin which is responsible for food and water intake in cell plasma mem-branes,interact with one another.This review aims to explore the interactions between nutrient transporters and aquaporins during water and nutrient uptake.It also investigates how symbiotic relationships influence the plant genome’s responses to regulatory processes such as photoperiodism,senescence,and nitrogenfixation.These responses are observed in reaction to various abiotic stresses.For instance,plasma membrane transporters are upregulated during macronutrient insufficiency,tonoplast transporters are overexpressed,and aquaporins are downregulated in micronutrient deficiency.Additionally,tolerant plants often exhibit increased expression of nutrient transporters and aquaporins in response to drought,salt,and cold temperatures.To better comprehend plant stress tolerance to abiotic challenges including starvation,K famine,salt,and freezing temperatures,both classes of nutrient and water transporters should be considered at the same time.展开更多
Two types of tightly coupled Selective Catalytic Reduction(SCR)mixers were designed in this study,namely Mixer 1 integrated with an SCR catalyst and Mixer 2 arranged separately.Computational Fluid Dynamics(CFD)softwar...Two types of tightly coupled Selective Catalytic Reduction(SCR)mixers were designed in this study,namely Mixer 1 integrated with an SCR catalyst and Mixer 2 arranged separately.Computational Fluid Dynamics(CFD)software was utilized to model the gas flow,spraying,and pyrolysis reaction of the aqueous urea solution in the tightly coupled SCR system.The parameters of gas flow velocity uniformity and ammonia distribution uniformity were simulated and calculated for both Mixer 1 and Mixer 2 in the tightly coupled SCR system to compare their advantages and disadvantages.The simulation results indicated that Mixer 1 exhibited a gas velocity uniformity of 0.972 and an ammonia distribution uniformity of 0.817,whereas Mixer 2 demonstrated a gas velocity uniformity of 0.988 and an ammonia distribution uniformity of 0.964.Mixer 2 performed better in the simulation analysis.Furthermore,a 3D-printed prototype of Mixer 2 was manufactured and installed on an engine test bench to investigate ammonia distribution uniformity and NOX conversion efficiency.The experimental investigations yielded the following findings:1)The ammonia distribution uniformity of Mixer 2 was measured as 0.976,which closely aligned with the simulation result of 0.964,with a deviation of 1.2%from the model calculations;2)As exhaust temperature increased,the ammonia distribution uniformity gradually improved,while an increase in exhaust flow rate resulted in a decrease in ammonia distribution uniformity;3)When utilizing Mixer 2,the NOX conversion efficiency reached 84.7%at an exhaust temperature of 200°C and 97.4%at 250°C.Within the exhaust temperature range of 300°C to 450°C,the NOX conversion efficiency remained above 98%.This study proposed two innovative mixer structures,conducted simulation analysis,and performed performance testing.The research outcomes indicated that the separately arranged Mixer 2 exhibited superior performance.The tightly coupled SCR systemequippedwith Mixer 2 achieved excellent levels of gas velocity uniformity,ammonia distribution uniformity,and NOX conversion efficiency.These findings can serve as valuable references for the design and development of ultra-low emission after-treatment systems for diesel engines in the field of diesel engine aftertreatment.展开更多
Jasmonic acid is a crucial phytohormone that plays a pivotal role,serving as a regulator to balancing plant development and resistance.However,there are analogous and distinctive characteristics exhibited in JA biosyn...Jasmonic acid is a crucial phytohormone that plays a pivotal role,serving as a regulator to balancing plant development and resistance.However,there are analogous and distinctive characteristics exhibited in JA biosynthesis,perception,and signal transduction pathways in both herbaceous and woody plants.Moreover,the majority of research subjects have predominantly focused on the function of JA in model or herbaceous plants.Consequently,there is a significant paucity of studies investigating JA regulation networks in woody plants,particularly concerning post-transcriptional regulatory events such as alternative splicing(AS).This review article aims to conduct a comprehensive summary of advancements that JA signals regulate plant development across various woody species,comparing the analogous features and regulatory differences to herbaceous counterparts.In addition,we summarized the involvement of AS events including splicing factor(SF)and transcripts in the JA regulatory network,highlighting the effectiveness of high-throughput proteogenomic methods.A better understanding of the JA signaling pathway in woody plants has pivotal implications for forestry production,including optimizing plant management and enhancing secondary metabolite production.展开更多
Recent epidemiological surveys based on Baumann's classification have revealed a notable rise in the prevalence of oily sensitive skin.The development of oily sensitive skin is primarily linked to the abnormal fun...Recent epidemiological surveys based on Baumann's classification have revealed a notable rise in the prevalence of oily sensitive skin.The development of oily sensitive skin is primarily linked to the abnormal function of sebaceous glands.The function of sebaceous glands is regulated by several factors,including inflammatory mediators,neurotransmitters,and endocrine signals.Sensitive skin,particularly oily sensitive skin,is prone to local inflammation,which in turn disrupts the normal functioning of sebaceous glands.This creates a loop wherein increased oil production exacerbates sensitivity,while heightened sensitivity further stimulates sebum secretion,perpetuating a vicious cycle.This article summarizes our understanding of the four primary mechanisms underlying skin sensitivity and their impact on sebaceous gland activity.Accordingly,it proposes management strategies for oily sensitive skin and seeks to guide the development of skin care regimens for this skin type.展开更多
The ultimate pit may affect other aspects in the life of a mine such as economical, technical, environmental, and social aspects. What makes it even more complex is that most often there are many pits which are econom...The ultimate pit may affect other aspects in the life of a mine such as economical, technical, environmental, and social aspects. What makes it even more complex is that most often there are many pits which are economically minable. This calls for a heuristic approach to determine which of these pits is the ultimate pit. This study presents a means of selecting an ultimate pit during design operations of the Hebei Limestone mine. During optimization processes of the mine, many pit shells were created using Whittle Software. Normally, Whittle Software optimizes these processes and assigns a revenue factor of 1 for the ultimate pit. Unfortunately, the pit shells created did not satisfy the criteria with a revenue factor of 1 based on the parameters. As a result of this, statistical analysis was implemented to further understand the relationship, variability, and correlation of the pit shells created (data). Correlation Analysis, K-means++ Analysis, Principal Component Analysis, and Generalized Linear models were used in the analysis of the pit shells created. The results portray a salient relationship of the optimization variables. In addition, the proposed method was tested on Whittle Sample projects which satisfy the selection of ultimate pit selection with a revenue factor of 1. The results show that the proposed model produced almost the same results as the Whittle model with a revenue factor of 1 and was also able to determine the ultimate pit in cases which did not satisfy the Whittle selection criteria.展开更多
The large aperture optical mirror for space is processed and tested in the gravity environment on the ground. After entering space, gravity disappears due to the change of environment, and the mirror surface that has ...The large aperture optical mirror for space is processed and tested in the gravity environment on the ground. After entering space, gravity disappears due to the change of environment, and the mirror surface that has met the engineering requirements on the ground will change, seriously affecting the imaging quality. In order to eliminate the influence of gravity and to ensure the consistency of space and ground, gravity unloading must be performed. In order to meet the requirements of processing and testing for the large aperture space mirror in the state of vertical optical axis, a universal gravity unloading device was proposed. It was an active support and used air cylinders to provide accurate unloading force. First, the design flow of gravity unloading was introduced;then the detailed design of the mechanical structure and control system was given;then the performance parameters of the two types of cylinders were tested and compared, including the force-pressure relationship curve and the force-position relationship curve;finally, the experimental verification of the gravity unloading device was carried out;for a mirror with an aperture of ?2100 mm, the gravity unloading device was designed and a vertical detection optical path was built. The test results showed that by using this gravity unloading device, the actual processing surface accuracy of the mirror was better than 1/50λ-RMS, which met the application requirement of the optical system. Thus, it can be seen that using this gravity unloading device can effectively unload the gravity of the mirror and realize the accurate processing and measurement of the mirror surface. .展开更多
Recently,internet stimulates the explosive progress of knowledge discovery in big volume data resource,to dig the valuable and hidden rules by computing.Simultaneously,the wireless channel measurement data reveals big...Recently,internet stimulates the explosive progress of knowledge discovery in big volume data resource,to dig the valuable and hidden rules by computing.Simultaneously,the wireless channel measurement data reveals big volume feature,considering the massive antennas,huge bandwidth and versatile application scenarios.This article firstly presents a comprehensive survey of channel measurement and modeling research for mobile communication,especially for 5th Generation(5G) and beyond.Considering the big data research progress,then a cluster-nuclei based model is proposed,which takes advantages of both the stochastical model and deterministic model.The novel model has low complexity with the limited number of cluster-nuclei while the cluster-nuclei has the physical mapping to real propagation objects.Combining the channel properties variation principles with antenna size,frequency,mobility and scenario dug from the channel data,the proposed model can be expanded in versatile application to support future mobile research.展开更多
To meet the major challenge of increasing rice production to feed a growing population under increasing water scarcity,many water-saving regimes have been introduced in irrigated rice,such as an aerobic rice system,no...To meet the major challenge of increasing rice production to feed a growing population under increasing water scarcity,many water-saving regimes have been introduced in irrigated rice,such as an aerobic rice system,non-flooded mulching cultivation,and alternate wetting and drying(AWD).These regimes could substantially enhance water use efficiency(WUE) by reducing irrigation water.However,such enhancements greatly compromise grain yield.Recent work has shown that moderate AWD,in which photosynthesis is not severely inhibited and plants can rehydrate overnight during the soil drying period,or plants are rewatered at a soil water potential of-10 to-15 k Pa,or midday leaf potential is approximately-0.60 to-0.80 MPa,or the water table is maintained at 10 to 15 cm below the soil surface,could increase not only WUE but also grain yield.Increases in grain yield WUE under moderate AWD are due mainly to reduced redundant vegetative growth;improved canopy structure and root growth;elevated hormonal levels,in particular increases in abscisic acid levels during soil drying and cytokinin levels during rewatering;and enhanced carbon remobilization from vegetative tissues to grain.Moderate AWD could also improve rice quality,including reductions in grain arsenic accumulation,and reduce methane emissions from paddies.Adoption of moderate AWD with an appropriate nitrogen application rate may exert a synergistic effect on grain yield and result in higher WUE and nitrogen use efficiency.Further research is needed to understand root–soil interaction and evaluate the long-term effects of moderate AWD on sustainable agriculture.展开更多
Dry direct-seeded rice grown in raised beds is becoming an important practice in the wheat–rice rotation system in China.However,little information has been available on the effect of various irrigation regimes on gr...Dry direct-seeded rice grown in raised beds is becoming an important practice in the wheat–rice rotation system in China.However,little information has been available on the effect of various irrigation regimes on grain yield,water productivity(WP),nitrogen use efficiency(NUE),and greenhouse gas emission in this practice.This study investigated the question using two rice cultivars in 2015 and 2016 grown in soil with wheat straw incorporated into it.Rice seeds were directly seeded into raised beds,which were maintained under aerobic conditions during the early seedling period.Three irrigation regimes:continuous flooding(CF),alternate wetting and drying(AWD),and furrow irrigation(FI),were applied from 4.5-leaf-stage to maturity.Compared with CF,both AWD and FI significantly increased grain yield,WP,and internal NUE,with greater increases under the FI regime.The two cultivars showed the same tendency in both years.Both AWD and FI markedly increased soil redox potential,root and shoot biomass,root oxidation activity,leaf photosynthetic NUE,and harvest index and markedly decreased global warming potential,owing to substantial reduction in seasonalThe results demonstrate that adoption of either AWD or FI could increase grain yield and resource-use efficiency and reduce environmental risks in dry direct-seeded rice grown on raised beds with wheat straw incorporation in the wheat–rice rotation system.展开更多
Terahertz(THz)communication has been envisioned as a key enabling technology for sixthgeneration(6G).In this paper,we present an extensive THz channel measurement campaign for 6G wireless communications from 220 GHz t...Terahertz(THz)communication has been envisioned as a key enabling technology for sixthgeneration(6G).In this paper,we present an extensive THz channel measurement campaign for 6G wireless communications from 220 GHz to 330 GHz.Furthermore,the path loss is analyzed and modeled by using two single-frequency path loss models and a multiplefrequencies path loss model.It is found that at most frequency points,the measured path loss is larger than that in the free space.But at around 310 GHz,the propagation attenuation is relatively weaker compared to that in the free space.Also,the frequency dependence of path loss is observed and the frequency exponent of the multiple-frequencies path loss model is 2.1.Moreover,the cellular performance of THz communication systems is investigated by using the obtained path loss model.Simulation results indicate that the current inter-site distance(ISD)for the indoor scenario is too small for THz communications.Furthermore,the tremendous capacity gain can be obtained by using THz bands compared to using microwave bands and millimeter wave bands.Generally,this work can give an insight into the design and optimization of THz communication systems for 6G.展开更多
Internet of Things(IoT) is one of the targeted application scenarios of fifth generation(5 G) wireless communication.IoT brings a large amount of data transported on the network.Considering those data,machine learning...Internet of Things(IoT) is one of the targeted application scenarios of fifth generation(5 G) wireless communication.IoT brings a large amount of data transported on the network.Considering those data,machine learning(ML) algorithms can be naturally utilized to make network efficiently and reliably.However,how to fully apply ML to IoT driven wireless network is still open.The fundamental reason is that wireless communication pursuits the high capacity and quality facing the challenges from the varying and fading wireless channel.So in this paper,we explore feasible combination for ML and IoT driven wireless network from wireless channel perspective.Firstly,a three-level structure of wireless channel fading features is defined in order to classify the versatile propagation environments.This three-layer structure includes scenario,meter and wavelength levels.Based on this structure,there are different tasks like service prediction and pushing,self-organization networking,self adapting largescale fading modeling and so on,which can be abstracted into problems like regression,classification,clustering,etc.Then,we introduce corresponding ML methods to different levelsfrom channel perspective,which makes their interdisciplinary research promisingly.展开更多
基金Shandong Province Traditional Chinese Medicine Science and Technology Project Task Book Number(Project No.:M-2022178)2024 Shandong Provincial Traditional Chinese Medicine Science and Technology Project(Project No.:Z20242407)。
文摘Objective:To study the therapeutic effect of the Extract of Wuwei Xiaodu Drink on spinal infection and provide the scientific basis for clinical application.Methods:By establishing a rabbit model of spinal infection,this paper observed and analyzed the changes in body mass before and after the intervention and the comparison of inflammation-related factors and blood leukocyte counts among the three groups.Results:There was a significant difference in the changes in body mass of rabbits before and after intervention in the experimental group,control group and blank group(P<0.05);there was no statistically significant difference in calcitoninogen,C-reactive protein and routine blood leukocyte counts between the experimental group and the control group(P>0.05),and there was a statistically significant difference in calcitoninogen,C-reactive protein and routine blood leukocyte counts between the experimental group and the blank group(P<0.05).Conclusion:The Extract of Wuwei Xiaodu Drink can play a protective role by regulating the level of inflammatory factors in blood routine leukocyte count and reducing the inflammatory reaction in the spinal cord injury area.
基金supported by the National Key Research and Development Program of China (2022YFD2300304)the National Natural Science Foundation of China (32071944 and 32272197)+2 种基金the Hong Kong Research Grants Council, China (GRF 14177617, 12103219, 12103220, and AoE/M-403/16)the State Key Laboratory of Agrobiotechnology (Strategic Collaborative Projects) in The Chinese University of Hong Kong, China, the Six Talent Peaks Project in Jiangsu Province, China (SWYY151)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD).
文摘Integrative cultivation practices(ICPs)are essential for enhancing cereal yield and resource use efficiency.However,the effects of ICP on the rhizosphere environment and roots of paddy rice are still poorly understood.In this study,four rice varieties were produced in the field.Each variety was treated with six different cultivation techniques,including zero nitrogen application(0 N),local farmers’practice(LFP),nitrogen reduction(NR),and three progressive ICP techniques comprised of enhanced fertilizer N practice and increased plant density(ICP1),a treatment similar to ICP1 but with alternate wetting and moderate drying instead of continuous flooding(ICP2),and the same practices as ICP2 with the application of organic fertilizer(ICP3).The ICPs had greater grain production and nitrogen use efficiency than the other three methods.Root length,dry weight,root diameter,activity of root oxidation,root bleeding rate,zeatin and zeatin riboside compositions,and total organic acids in root exudates were elevated with the introduction of the successive cultivation practices.ICPs enhanced nitrate nitrogen,the activities of urease and invertase,and the diversity of microbes(bacteria)in rhizosphere and non-rhizosphere soil,while reducing the ammonium nitrogen content.The nutrient contents(ammonium nitrogen,total nitrogen,total potassium,total phosphorus,nitrate,and available phosphorus)and urease activity in rhizosphere soil were reduced in all treatments in comparison with the non-rhizosphere soil,but the invertase activity and bacterial diversity were greater.The main root morphology and physiology,and the ammonium nitrogen contents in rhizosphere soil at the primary stages were closely correlated with grain yield and internal nitrogen use efficiency.These findings suggest that the coordinated enhancement of the root system and the environment of the rhizosphere under integrative cultivation approaches may lead to higher rice production.
基金supported by the National Science Fund for Distinguished Young Scholars(No.61925102)the National Natural Science Foundation of China(No.62201086,92167202,62201087,62101069)BUPT-CMCC Joint Innovation Center,and State Key Laboratory of IPOC(BUPT)(No.IPOC2023ZT02),China。
文摘Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we present extensive VLC channel measurement campaigns in indoor environments,i.e.,an office and a corridor.Based on the measured data,the large-scale fading characteristics and multipath-related characteristics,including omnidirectional optical path loss(OPL),K-factor,power angular spectrum(PAS),angle spread(AS),and clustering characteristics,are analyzed and modeled through a statistical method.Based on the extracted statistics of the above-mentioned channel characteristics,we propose a statistical spatial channel model(SSCM)capable of modeling multipath in the spatial domain.Furthermore,the simulated statistics of the proposed model are compared with the measured statistics.For instance,in the office,the simulated path loss exponent(PLE)and the measured PLE are 1.96and 1.97,respectively.And,the simulated medians of AS and measured medians of AS are 25.94°and 24.84°,respectively.Generally,the fact that the simulated results fit well with measured results has demonstrated the accuracy of our SSCM.
基金Supported by National Natural Science Foundation of China(Grant Nos.U23A20338,62103131 and 62203149)Hebei Provincial Natural Science Foundation(Grant No.E2022202171).
文摘The wearable exoskeleton system is a typical strongly coupled human-robotic system.Human-robotic is the environment for each other.The two support each other and compete with each other.Achieving high human-robotic compatibility is the most critical technology for wearable systems.Full structural compatibility can improve the intrinsic safety of the exoskeleton,and precise intention understanding and motion control can improve the comfort of the exoskeleton.This paper first designs a physiologically functional bionic lower limb exoskeleton based on the study of bone and joint functional anatomy and analyzes the drive mapping model of the dual closedloop four-link knee joint.Secondly,an exoskeleton dual closed-loop controller composed of a position inner loop and a force outer loop is designed.The inner loop of the controller adopts the PID control algorithm,and the outer loop adopts the adaptive admittance control algorithm based on human-robot interaction force(HRI).The controller can adaptively adjust the admittance parameters according to the HRI to respond to dynamic changes in the mechanical and physical parameters of the human-robot system,thereby improving control compliance and the wearing comfort of the exoskeleton system.Finally,we built a joint simulation experiment platform based on SolidWorks/Simulink to conduct virtual prototype simulation experiments and recruited volunteers to wear rehabilitation exoskeletons to conduct related control experiments.Experimental results show that the designed physiologically functional bionic exoskeleton and adaptive admittance controller can significantly improve the accuracy of human-robotic joint motion tracking,effectively reducing human-machine interaction forces and improving the comfort and safety of the wearer.This paper proposes a dual-closed loop four-link knee joint exoskeleton and a variable admittance control method based on HRI,which provides a new method for the design and control of exoskeletons with high compatibility.
基金This work was supported by National Key R&D Program Project[Grant Number 2020YFB0106603]Provincial Major Scientific and Technological Innovation Project[Grant Number 2021CXGC010207-1]+2 种基金Shantui Engineering Machinery Intelligent Equipment Innovation and Entrepreneurship Community Innovation Project[Grant Number GTT2021105]Shandong Provincial Science and Technology SMEs Innovation Capacity Improvement Project[Grant Numbers 2021TSGC1334]Undergraduate School of Shandong University,China[Grant Number 2022Y155].
文摘A Diesel Particulate Filter(DPF)is a critical device for diesel engine exhaust products treatment.When using active-regeneration purification methods,on the one hand,a spatially irregular gas flow can produce relatively high local temperatures,potentially resulting in damage to the carrier;On the other hand,the internal temperature field can also undergo significant changes contributing to increase this risk.This study explores the gas flow uniformity in a DPF carrier and the related temperature behavior under drop-to-idle(DTI)condition by means of bench tests.It is shown that the considered silicon carbide carrier exhibits good flow uniformity,with a temperature deviation of no more than 2%with respect to the same radius measurement point at the outlet during the regeneration stage.In the DTI test,the temperature is relatively high within r/2 near the outlet end,where the maximum temperature peak occurs,and the maximum radial temperature gradient is located between r/2 and the edge.Both these quantities grow as the soot load increases,thereby making the risk of carrier burnout greater.Finally,it is shown that the soot load limit of the silicon carbide DPF can be extended to 11 g/L,which reduces the frequency of active regeneration by approximately 40%compared to a cordierite DPF.
基金supported by the Natural Science Foundation of Jiangsu Higher Education Institutions of China(23KJA210003)the Open Project Program of Joint International Research Laboratory of Agriculture and Agri-Product Safety,the Ministry of Education of China,Yangzhou University(JILAR-KF202202).
文摘Variations in the nutrients and water that plants require for metabolism,development,and the maintenance of cellular homeostasis are the main causes of abiotic stress in plants.It has,however,hardly ever been studied how these transporter proteins,such as aquaporin which is responsible for food and water intake in cell plasma mem-branes,interact with one another.This review aims to explore the interactions between nutrient transporters and aquaporins during water and nutrient uptake.It also investigates how symbiotic relationships influence the plant genome’s responses to regulatory processes such as photoperiodism,senescence,and nitrogenfixation.These responses are observed in reaction to various abiotic stresses.For instance,plasma membrane transporters are upregulated during macronutrient insufficiency,tonoplast transporters are overexpressed,and aquaporins are downregulated in micronutrient deficiency.Additionally,tolerant plants often exhibit increased expression of nutrient transporters and aquaporins in response to drought,salt,and cold temperatures.To better comprehend plant stress tolerance to abiotic challenges including starvation,K famine,salt,and freezing temperatures,both classes of nutrient and water transporters should be considered at the same time.
文摘Two types of tightly coupled Selective Catalytic Reduction(SCR)mixers were designed in this study,namely Mixer 1 integrated with an SCR catalyst and Mixer 2 arranged separately.Computational Fluid Dynamics(CFD)software was utilized to model the gas flow,spraying,and pyrolysis reaction of the aqueous urea solution in the tightly coupled SCR system.The parameters of gas flow velocity uniformity and ammonia distribution uniformity were simulated and calculated for both Mixer 1 and Mixer 2 in the tightly coupled SCR system to compare their advantages and disadvantages.The simulation results indicated that Mixer 1 exhibited a gas velocity uniformity of 0.972 and an ammonia distribution uniformity of 0.817,whereas Mixer 2 demonstrated a gas velocity uniformity of 0.988 and an ammonia distribution uniformity of 0.964.Mixer 2 performed better in the simulation analysis.Furthermore,a 3D-printed prototype of Mixer 2 was manufactured and installed on an engine test bench to investigate ammonia distribution uniformity and NOX conversion efficiency.The experimental investigations yielded the following findings:1)The ammonia distribution uniformity of Mixer 2 was measured as 0.976,which closely aligned with the simulation result of 0.964,with a deviation of 1.2%from the model calculations;2)As exhaust temperature increased,the ammonia distribution uniformity gradually improved,while an increase in exhaust flow rate resulted in a decrease in ammonia distribution uniformity;3)When utilizing Mixer 2,the NOX conversion efficiency reached 84.7%at an exhaust temperature of 200°C and 97.4%at 250°C.Within the exhaust temperature range of 300°C to 450°C,the NOX conversion efficiency remained above 98%.This study proposed two innovative mixer structures,conducted simulation analysis,and performed performance testing.The research outcomes indicated that the separately arranged Mixer 2 exhibited superior performance.The tightly coupled SCR systemequippedwith Mixer 2 achieved excellent levels of gas velocity uniformity,ammonia distribution uniformity,and NOX conversion efficiency.These findings can serve as valuable references for the design and development of ultra-low emission after-treatment systems for diesel engines in the field of diesel engine aftertreatment.
基金supported by the Natural Science Foundation of Jiangsu Province(BK20221334)the Jiangsu Agricultural Science and Technology Innovation Fund(CX(21)2023)+2 种基金the Science Technology and Innovation Committee of Shenzhen(JCYJ20210324115408023)the Major Project of Natural Science Research in Colleges of Jiangsu Province(20KJA220001)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_1115).
文摘Jasmonic acid is a crucial phytohormone that plays a pivotal role,serving as a regulator to balancing plant development and resistance.However,there are analogous and distinctive characteristics exhibited in JA biosynthesis,perception,and signal transduction pathways in both herbaceous and woody plants.Moreover,the majority of research subjects have predominantly focused on the function of JA in model or herbaceous plants.Consequently,there is a significant paucity of studies investigating JA regulation networks in woody plants,particularly concerning post-transcriptional regulatory events such as alternative splicing(AS).This review article aims to conduct a comprehensive summary of advancements that JA signals regulate plant development across various woody species,comparing the analogous features and regulatory differences to herbaceous counterparts.In addition,we summarized the involvement of AS events including splicing factor(SF)and transcripts in the JA regulatory network,highlighting the effectiveness of high-throughput proteogenomic methods.A better understanding of the JA signaling pathway in woody plants has pivotal implications for forestry production,including optimizing plant management and enhancing secondary metabolite production.
文摘Recent epidemiological surveys based on Baumann's classification have revealed a notable rise in the prevalence of oily sensitive skin.The development of oily sensitive skin is primarily linked to the abnormal function of sebaceous glands.The function of sebaceous glands is regulated by several factors,including inflammatory mediators,neurotransmitters,and endocrine signals.Sensitive skin,particularly oily sensitive skin,is prone to local inflammation,which in turn disrupts the normal functioning of sebaceous glands.This creates a loop wherein increased oil production exacerbates sensitivity,while heightened sensitivity further stimulates sebum secretion,perpetuating a vicious cycle.This article summarizes our understanding of the four primary mechanisms underlying skin sensitivity and their impact on sebaceous gland activity.Accordingly,it proposes management strategies for oily sensitive skin and seeks to guide the development of skin care regimens for this skin type.
文摘The ultimate pit may affect other aspects in the life of a mine such as economical, technical, environmental, and social aspects. What makes it even more complex is that most often there are many pits which are economically minable. This calls for a heuristic approach to determine which of these pits is the ultimate pit. This study presents a means of selecting an ultimate pit during design operations of the Hebei Limestone mine. During optimization processes of the mine, many pit shells were created using Whittle Software. Normally, Whittle Software optimizes these processes and assigns a revenue factor of 1 for the ultimate pit. Unfortunately, the pit shells created did not satisfy the criteria with a revenue factor of 1 based on the parameters. As a result of this, statistical analysis was implemented to further understand the relationship, variability, and correlation of the pit shells created (data). Correlation Analysis, K-means++ Analysis, Principal Component Analysis, and Generalized Linear models were used in the analysis of the pit shells created. The results portray a salient relationship of the optimization variables. In addition, the proposed method was tested on Whittle Sample projects which satisfy the selection of ultimate pit selection with a revenue factor of 1. The results show that the proposed model produced almost the same results as the Whittle model with a revenue factor of 1 and was also able to determine the ultimate pit in cases which did not satisfy the Whittle selection criteria.
文摘The large aperture optical mirror for space is processed and tested in the gravity environment on the ground. After entering space, gravity disappears due to the change of environment, and the mirror surface that has met the engineering requirements on the ground will change, seriously affecting the imaging quality. In order to eliminate the influence of gravity and to ensure the consistency of space and ground, gravity unloading must be performed. In order to meet the requirements of processing and testing for the large aperture space mirror in the state of vertical optical axis, a universal gravity unloading device was proposed. It was an active support and used air cylinders to provide accurate unloading force. First, the design flow of gravity unloading was introduced;then the detailed design of the mechanical structure and control system was given;then the performance parameters of the two types of cylinders were tested and compared, including the force-pressure relationship curve and the force-position relationship curve;finally, the experimental verification of the gravity unloading device was carried out;for a mirror with an aperture of ?2100 mm, the gravity unloading device was designed and a vertical detection optical path was built. The test results showed that by using this gravity unloading device, the actual processing surface accuracy of the mirror was better than 1/50λ-RMS, which met the application requirement of the optical system. Thus, it can be seen that using this gravity unloading device can effectively unload the gravity of the mirror and realize the accurate processing and measurement of the mirror surface. .
基金supported by the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine(ZYYCXTD-C-202006)Gansu Cheezheng Tibetan Medicine(BUCM-2021-JS-FW-087,Beijing,China).
文摘目的:评价白脉软膏在腰椎间盘突出症(lumbar disc herniation)患者中的疗效与安全性。方法:本研究设计了一项前瞻、随机、双盲、安慰剂对照的多中心临床试验方案。计划招募194例患者,按1:1的比例平均分配至试验组和对照组。患者将接受为期14天的白脉软膏或安慰剂的干预,随后进行为期1周的随访。通过视觉模拟评分法(visual analogue scale score)评估疼痛程度,日本骨科协会评估治疗分数(Japanese Orthopedic Association score)评估功能状态,Likert量表将用于评估麻木程度,此外还将记录应急处理的使用和对健康教育的依从情况。安全性评估将包括实验室检查和不良事件记录。讨论:这项试验将首次对白脉软膏在腰椎间盘突出症患者中进行临床疗效和安全性评价。使用安慰剂的优势在于排除因盲法不充分而导致的偏倚。为了避免由研究对象和研究者的主观因素引起的任何偏倚,对于结局评价者、数据管理人员、统计分析人员以及所有相关研究人员都将实施盲法。本试验结果将为腰椎间盘突出症的治疗以及白脉软膏的未来研究方向提供重要依据。
基金supported in part by National Natural Science Foundation of China (61322110, 6141101115)Doctoral Fund of Ministry of Education (201300051100013)
文摘Recently,internet stimulates the explosive progress of knowledge discovery in big volume data resource,to dig the valuable and hidden rules by computing.Simultaneously,the wireless channel measurement data reveals big volume feature,considering the massive antennas,huge bandwidth and versatile application scenarios.This article firstly presents a comprehensive survey of channel measurement and modeling research for mobile communication,especially for 5th Generation(5G) and beyond.Considering the big data research progress,then a cluster-nuclei based model is proposed,which takes advantages of both the stochastical model and deterministic model.The novel model has low complexity with the limited number of cluster-nuclei while the cluster-nuclei has the physical mapping to real propagation objects.Combining the channel properties variation principles with antenna size,frequency,mobility and scenario dug from the channel data,the proposed model can be expanded in versatile application to support future mobile research.
基金the National Basic Research Program(973 Program,No.2012CB114306)the National Natural Science Foundation of China(Nos.31461143015+5 种基金31271641,31471438)the National Key Technology Support Program of China(Nos.2014AA10A6052012BAD04B08)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Top Talent Supporting Program of Yangzhou University(No.2015-01)Jiangsu Creation Program for Postgraduate Students(No.KYZZ15_0364)
文摘To meet the major challenge of increasing rice production to feed a growing population under increasing water scarcity,many water-saving regimes have been introduced in irrigated rice,such as an aerobic rice system,non-flooded mulching cultivation,and alternate wetting and drying(AWD).These regimes could substantially enhance water use efficiency(WUE) by reducing irrigation water.However,such enhancements greatly compromise grain yield.Recent work has shown that moderate AWD,in which photosynthesis is not severely inhibited and plants can rehydrate overnight during the soil drying period,or plants are rewatered at a soil water potential of-10 to-15 k Pa,or midday leaf potential is approximately-0.60 to-0.80 MPa,or the water table is maintained at 10 to 15 cm below the soil surface,could increase not only WUE but also grain yield.Increases in grain yield WUE under moderate AWD are due mainly to reduced redundant vegetative growth;improved canopy structure and root growth;elevated hormonal levels,in particular increases in abscisic acid levels during soil drying and cytokinin levels during rewatering;and enhanced carbon remobilization from vegetative tissues to grain.Moderate AWD could also improve rice quality,including reductions in grain arsenic accumulation,and reduce methane emissions from paddies.Adoption of moderate AWD with an appropriate nitrogen application rate may exert a synergistic effect on grain yield and result in higher WUE and nitrogen use efficiency.Further research is needed to understand root–soil interaction and evaluate the long-term effects of moderate AWD on sustainable agriculture.
基金the National Key Research and Development Program of China (2016YFD0300206-4)the National Natural Science Foundation of China (31461143015, 31471438)+3 种基金the National Key Technology R&D Program of China (2014AA10A605)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD-201501)the Top Talent Supporting Program of Yangzhou University (2015-01)the Hong Kong Research Grant Council (14122415,14160516,14177617,AoE/M-05/12,AoE/M-403/16)
文摘Dry direct-seeded rice grown in raised beds is becoming an important practice in the wheat–rice rotation system in China.However,little information has been available on the effect of various irrigation regimes on grain yield,water productivity(WP),nitrogen use efficiency(NUE),and greenhouse gas emission in this practice.This study investigated the question using two rice cultivars in 2015 and 2016 grown in soil with wheat straw incorporated into it.Rice seeds were directly seeded into raised beds,which were maintained under aerobic conditions during the early seedling period.Three irrigation regimes:continuous flooding(CF),alternate wetting and drying(AWD),and furrow irrigation(FI),were applied from 4.5-leaf-stage to maturity.Compared with CF,both AWD and FI significantly increased grain yield,WP,and internal NUE,with greater increases under the FI regime.The two cultivars showed the same tendency in both years.Both AWD and FI markedly increased soil redox potential,root and shoot biomass,root oxidation activity,leaf photosynthetic NUE,and harvest index and markedly decreased global warming potential,owing to substantial reduction in seasonalThe results demonstrate that adoption of either AWD or FI could increase grain yield and resource-use efficiency and reduce environmental risks in dry direct-seeded rice grown on raised beds with wheat straw incorporation in the wheat–rice rotation system.
基金supported by the National Science Fund for Distinguished Young Scholars(No.61925102)the National Key R&D Program of China(No.2020YFB1805002)the Key Project of State Key Lab of Networking and Switching Technology(No.NST20180105).
文摘Terahertz(THz)communication has been envisioned as a key enabling technology for sixthgeneration(6G).In this paper,we present an extensive THz channel measurement campaign for 6G wireless communications from 220 GHz to 330 GHz.Furthermore,the path loss is analyzed and modeled by using two single-frequency path loss models and a multiplefrequencies path loss model.It is found that at most frequency points,the measured path loss is larger than that in the free space.But at around 310 GHz,the propagation attenuation is relatively weaker compared to that in the free space.Also,the frequency dependence of path loss is observed and the frequency exponent of the multiple-frequencies path loss model is 2.1.Moreover,the cellular performance of THz communication systems is investigated by using the obtained path loss model.Simulation results indicate that the current inter-site distance(ISD)for the indoor scenario is too small for THz communications.Furthermore,the tremendous capacity gain can be obtained by using THz bands compared to using microwave bands and millimeter wave bands.Generally,this work can give an insight into the design and optimization of THz communication systems for 6G.
基金supported by National Science and Technology Major Program of the Ministry of Science and Technology(No.2018ZX03001031)Key program of Beijing Municipal Natural Science Foundation(No.L172030)+1 种基金Beijing unicipal Science and Technology Commission Project(No.Z181100003218007)National Key Technology Research and Development Program of the Ministry of Science and Technology of China(NO.2012BAF14B01)
文摘Internet of Things(IoT) is one of the targeted application scenarios of fifth generation(5 G) wireless communication.IoT brings a large amount of data transported on the network.Considering those data,machine learning(ML) algorithms can be naturally utilized to make network efficiently and reliably.However,how to fully apply ML to IoT driven wireless network is still open.The fundamental reason is that wireless communication pursuits the high capacity and quality facing the challenges from the varying and fading wireless channel.So in this paper,we explore feasible combination for ML and IoT driven wireless network from wireless channel perspective.Firstly,a three-level structure of wireless channel fading features is defined in order to classify the versatile propagation environments.This three-layer structure includes scenario,meter and wavelength levels.Based on this structure,there are different tasks like service prediction and pushing,self-organization networking,self adapting largescale fading modeling and so on,which can be abstracted into problems like regression,classification,clustering,etc.Then,we introduce corresponding ML methods to different levelsfrom channel perspective,which makes their interdisciplinary research promisingly.