期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Halogen chlorine triggered oxygen vacancy-rich Ni(OH)_(2) with enhanced reaction kinetics for pseudocapacitive energy storage 被引量:1
1
作者 jiangyu hao Lijin Yan +6 位作者 Liang Luo Qiaohui Liu Youcun Bai Yuying Han Yang Zhou Xuefeng Zou Bin Xiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期296-306,I0007,共12页
Two-dimensional (2D)Ni(OH)_(2) nanosheets can theoretically expose their active sites of 100%.Whereas,their intrinsic easy accumulation and low conductivity lead to weak and unsustainable reaction kinetics.Herein,we p... Two-dimensional (2D)Ni(OH)_(2) nanosheets can theoretically expose their active sites of 100%.Whereas,their intrinsic easy accumulation and low conductivity lead to weak and unsustainable reaction kinetics.Herein,we propose a novel halogen chlorine-triggered electrochemical etching strategy to controllably manage the reaction kinetics of 2D Ni(OH)_(2) nanosheets(EE/Cl-Ni(OH)_(2)).It is found that halogen chlorine doping can adjust the interlamellar spacing flexibly and promote the lattice oxygen activation to achieve controlled construction of superficial oxygen defects at the adjustable voltage.The optimal EE/Cl-Ni(OH)_(2) electrode exhibits a high rate capability and excellent specific capacity of 206.9 mA h g^(-1) at 1 A g^(-1) in a three-electrode system,which is more than twice as high as the pristine Ni(OH)_(2).Furthermore,EE/Cl-Ni(OH)_(2) cathode and FeOOH@rGO anode are employed for developing an aqueous Ni-Fe battery with an excellent energy density of 83 W h kg^(-1),a high power density of 17051 W kg^(-1),and robust durability over 20,000 cycles.This strategy exploits a fresh channel for the ingenious fabrication of highefficiency and stable nickel-based deficiency materials for energy storage. 展开更多
关键词 Ni(OH)_(2) Electrochemical etching Lattice defects High energy density Ni-Fe battery
在线阅读 下载PDF
A universal design for triggering the precise micro-structure reconstruction through in-situ electro-regulating to boost the pseudocapacitance of MnO_(2)
2
作者 Lijin Yan jiangyu hao +8 位作者 Baibai Liu Xuefeng Zou Qibin Wu Jin Hou Jizhou Duan Shicheng Wei Yang Zhou Bin Xiang Baorong Hou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第11期184-197,I0006,共15页
Developing a precise controllable strategy for modulating the micro-morphology,atom coordination environment,and electronic structure of electrode materials is crucial for the performance in the field of energy storag... Developing a precise controllable strategy for modulating the micro-morphology,atom coordination environment,and electronic structure of electrode materials is crucial for the performance in the field of energy storage,yet still a tremendous challenge.Herein,a facile and universal in-situ electrochemical self-optimization design,electro-regulating,is designed to controllably produce electrode materials with abundant defects.Through detailed characterization studies,the microstructure of MnO_(2) is reconstructed after electro-regulating,which exhibits a structure of small fragments with numerous holes due to the partial self-dissolution of acidic oxides under an alkaline operating environment.Furthermore,the electro-regulating strategy not only presents the formation steps of numerous holes but is also accompanies by a number of O vacancies generation process due to the activation of an external electric field.This study provides a new inspiration for reasonably designing advanced functional electrode materials for various electrochemical applications and beyond. 展开更多
关键词 Electro-regulating Microstructure reconstructed MnO_(2) Corrosion resistance Supercapacitors
在线阅读 下载PDF
In-situ cation-inserted MnO_(2) with selective accelerated intercalation of individual H^(+) or Zn^(2+) ions in aqueous zinc ion batteries
3
作者 Lijin Yan Baibai Liu +6 位作者 jiangyu hao Yuying Han Chong Zhu Fuliang Liu Xuefeng Zou Yang Zhou Bin Xiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期88-102,I0003,共16页
The recognized energy storage mechanism of neutral aqueous zinc-manganese batteries is the co-insertion/extrusion of H^(+) and Zn^(2+) ions.However,modulating the kinetics of a single H^(+) or Zn^(2+) ion is scarce,wh... The recognized energy storage mechanism of neutral aqueous zinc-manganese batteries is the co-insertion/extrusion of H^(+) and Zn^(2+) ions.However,modulating the kinetics of a single H^(+) or Zn^(2+) ion is scarce,which can provide meaningful insights into the energy storage mechanism of Zn ion batteries.Herein,a distinctive doubly electric field in-situ induced cationic anchoring of two-dimensional layered MnO_(2) is successfully constructed to modulate the insertion/extrusion of a single H^(+) or Zn^(2+) ion.As a result,regulating the intercalation of different metal ions can precisely achieve the accelerated induction for the individual H^(+) or Zn^(2+) ions intercalation/deintercalation.Moreover,the introduction of metal ions stabilizes the lattice distortion and alleviates the irreparable structural collapse,leading to an increase in the H^(+)/Zn^(2+) storage sites,efficiently diminishing the stagnation of the ordered structure and creating the more open channels,which is conducive to facilitating the diffusion of ions.This work delivers some innovative insights into pre-embedding strategies,and also serves as a precious reference for the cathode development of advanced aqueous batteries. 展开更多
关键词 In-situ inductions Manganese dioxide Insertion mechanisms Zinc-ion batteries
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部