期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Functional copolymer binder for nickel-rich cathode with exceptional cycling stability at high temperature through coordination interaction 被引量:2
1
作者 Mihan Jin Bing Li +3 位作者 Linlin Hu Peiyu Zhao Qilu Zhang jiangxuan song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期156-161,共6页
Nickel-rich layered oxide LiNi_(1-x-y)Co_(x)Al_yO_(2)(NCA) with high theoretical capacity is a promising cathode material for the next-generation high-energy batteries.However,it undergoes a rapid capacity fading when... Nickel-rich layered oxide LiNi_(1-x-y)Co_(x)Al_yO_(2)(NCA) with high theoretical capacity is a promising cathode material for the next-generation high-energy batteries.However,it undergoes a rapid capacity fading when operating at high temperature due to the accelerated cathode/electrolyte interfacial reactions and adhesive efficacy loss of conventional polyvinylideneffuoride(PVdF) binder.Herein,poly(acrylonitrile-co-methyl acrylate) copolymer is designed with electron-rich-C≡N groups as a novel binder for LiNi_(0.8)Co_(0.1)Al_(0.1)O_(2) cathode at high temperature.The electron-rich-C≡N groups are able to coordinate with the active Ni^(3+) on the surface of NCA,alleviating electrolyte decomposition and cathode structure degradation.Moreover,the strong adhesive ability is conducive to maintain integrity of electrodes upon cycling at 55℃.In consequence,the NCA electrodes with this functional binder display improved cycling stability(81.5% capacity retention after 100 cycles) and rate performance at 55℃. 展开更多
关键词 Polymer binder Nickel-rich cathode Coordination interaction High temperature Lithium-ion batteries
在线阅读 下载PDF
Stable lithium metal anode enabled by a robust artificial fluorinated hybrid interphase
2
作者 Qiwen Ran Hongyuan Zhao +5 位作者 Jintao Liu Lei Li Qiang Hu jiangxuan song Xingquan Liu Sridhar Kormarneni 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期612-621,I0014,共11页
One of the key challenges for achieving stable lithium(Li) metal anode is the construction of the rational solid electrolyte interphase(SEI),but its realization still faces enormous challenges.In this work,a robust ar... One of the key challenges for achieving stable lithium(Li) metal anode is the construction of the rational solid electrolyte interphase(SEI),but its realization still faces enormous challenges.In this work,a robust artificial fluorinated hybrid interphase consisting of lithium-bismuth(Li3Bi) alloy and lithium-fluoride(LiF) was designed to regulate Li deposition without Li dendrite growth.The obtained hybrid interphase showed the high Li+diffusion rate(3.5 × 10^(-4)S cm^(-1)),high electron resistivity(9.04 × 10^(4)Ω cm),and high mechanical strength(1348 MPa),thus enabling the uniform Li deposition at the Li/SEI interface.Specifically,Li3Bi alloy,as a superionic conductor,accelerated the Li+transport and stabilized the hybrid interphase.Meanwhile,LiF was identified as a superior electron-blocker to inhibit the electron tunneling from the Li anode into the SEI.As a result,the modified Li anode showed the stable Li plating/stripping behaviors over 1000 cycles even at 20 mA cm^(-2).Moreover,it also enabled the Li(50 μm)‖LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(4.4 mA h cm^(-2)) full cell to achieve an average Coulombic efficiency(CE) of 99.6%and a high-capacity retention of 79.2% after 100 cycles,whereas the bare Li anode only exhibited a low-capacity retention of 8.0%.This work sheds light on the internal mechanism of Li+transport within the hybrid interface and provides an effective approach to stabilize the interface of Li metal anode. 展开更多
关键词 Li metal anode Artificial interphase Li Bi alloy LIF Uniform Li deposition
在线阅读 下载PDF
Spatial structure regulation towards armor-clad five-membered pyrroline nitroxides catholyte for long-life aqueous organic redox flow batteries
3
作者 Hao Fan Kai Liu +7 位作者 Xudong Zhang Yunpeng Di Pan Liu Jiaqi Li Bo Hu Hongbin Li Mahalingam Ravivarma jiangxuan song 《eScience》 2024年第1期143-151,共9页
Five-membered pyrroline nitroxides with high-potential is fascinating as catholyte for aqueous organic redox flow batteries(AORFBs),however,it suffers from a primary deficiency of insufficient stability due to ring-op... Five-membered pyrroline nitroxides with high-potential is fascinating as catholyte for aqueous organic redox flow batteries(AORFBs),however,it suffers from a primary deficiency of insufficient stability due to ring-opening side reaction.Herein we report a spatial structure regulation strategy by host-vip chemistry,encapsulating 3-carbamoyl-2,2,5,5-tetramethylpyrroline-1-oxyl(CPL)into hydrosoluble cyclodextrins(CDs)with an inclusion structure of N–O⋅head towards cavity bottom,to boost the solubility and cyclability of pyrroline nitroxides significantly.The armor-clad CPL(CPL⊂HP-β-CD)catholyte in 0.05–0.5 M presents a battery capacity fade rate as low as 0.002%/cycle(0.233%/day)compared to the sole CPL in 0.05 M(0.039%/cycle or 5.23%/day)over 500 cycles in assembled AORFBs.The optimized reclining spatial structure with N–O⋅head towards CD cavity bottom effectively inhibits the attack of Lewis base species on the hydrogen abstraction site in pyrroline ring,and thus avoids the ring-opening side reaction of pyrroline nitroxides. 展开更多
关键词 Aqueous organic redox flow batteries Stabilization mechanism Spatial structure Five-membered pyrroline nitroxides Cyclodextrins
原文传递
Crosslinked carboxymethyl cellulose-sodium borate hybrid binder for advanced silicon anodes in lithium-ion batteries 被引量:6
4
作者 Li Zhang Yun Ding jiangxuan song 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第12期1773-1776,共4页
Silicon anodes have drawn ever-increasing attention in lithium-ion batteries(LIBs) owing to their extremely high theoretical capacity and abundance in the earth. Despite promising advantages, the wide use of silicon a... Silicon anodes have drawn ever-increasing attention in lithium-ion batteries(LIBs) owing to their extremely high theoretical capacity and abundance in the earth. Despite promising advantages, the wide use of silicon anodes in LIBs is highly hindered by their fast capacity fading and low Coulombic efficiency arising from their substantial volumetric variation(>300%). Herein, we report a novel aqueous hybrid gel binder for silicon anodes via crosslinking sodium carboxymethyl cellulose(NaCMC) by an inorganic crosslinker-sodium borate. Not only this gel polymer binder can chemically bond to silicon nanoparticle, but also the deformable framework of this crosslinked binder is capable of maintaining electrode integrity, thus buffering dramatic volume change of silicon. Consequently, the silicon anode with this gel binder exhibits good cycle life(1211.5 mAh/g after 600 cycles) and high initial Coulombic efficiency(88.95%). 展开更多
关键词 Lithium-ion batteries Silicon anodes Sodium carboxymethyl cellulose BINDER CROSSLINKING
原文传递
Stable Li metal anode by crystallographically oriented plating through in-situ surface doping 被引量:4
5
作者 Yangyang Liu Shizhao Xiong +4 位作者 Junkai Deng Xingxing Jiao Baorui song Aleksandar Matic jiangxuan song 《Science China Materials》 SCIE EI CSCD 2020年第6期1036-1045,共10页
Lithium(Li)metal is regarded as the holy grail anode material for high-energy-density batteries owing to its ultrahigh theoretical specific capacity.However,its practical application is severely hindered by the high r... Lithium(Li)metal is regarded as the holy grail anode material for high-energy-density batteries owing to its ultrahigh theoretical specific capacity.However,its practical application is severely hindered by the high reactivity of metallic Li against the commonly used electrolytes and uncontrolled growth of mossy/dendritic Li.Different from widely-used approaches of optimization of the electrolyte and/or interfacial engineering,here,we report a strategy of in-situ cerium(Ce)doping of Li metal to promote the preferential plating along the[200]direction and remarkably decreased surface energy of metallic Li.The in-situ Ce-doped Li shows a significantly reduced reactivity towards a standard electrolyte and,uniform and dendrite-free morphology after plating/stripping,as demonstrated by spectroscopic,morphological and electrochemical characterizations.In symmetric half cells,the in-situ Ce-doped Li shows a low corrosion current density against the electrolyte and drastically improved cycling even at a lean electrolyte condition.Furthermore,we show that the stable Li|LiCoO2 full cells with improved coulombic efficiency and cycle life are also achieved using the Ce-doped Li metal anode.This work provides an inspiring approach to bring Li metal towards practical application in high energy-density batteries. 展开更多
关键词 Li metal anode crystallographically oriented plating in-situ cerium doping low surface energy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部