In order to investigate the asymmetry of thermal conditions during directional solidification, the temperature evolution and correspondingly developed undercooling in a simplified single crystal blade cluster were num...In order to investigate the asymmetry of thermal conditions during directional solidification, the temperature evolution and correspondingly developed undercooling in a simplified single crystal blade cluster were numerically simulated. Simulation results demonstrate that the temperature distribution at the blade platforms is obviously asymmetrical. On the outside of the blade which directly faces the heating element, the liquidus(TL) isotherms progress relatively smoothly. On the inside of the blades facing the central rod, however, the TLisotherms are in concave shape and the slope goes upwards to the platform extremities. The average undercooling extent ?T and undercooling time ?t at the inside are much higher than those at the outside. It was then predicted that the inside platform extremities have significantly higher probabilities of stray grain formation compared to the outside ones. A corresponding experiment was carried out and the metallographic examination exhibited the same side-and height-dependence of stray grain formation in the blades as predicted. On the inside of the blades, all platforms are occupied by stray grains, while the platforms on the outside are nearly stray grain free. The simulation result agrees very well with the experimental observation.展开更多
During sintering of the silica-based ceramic core of turbine blades,a phenomenon called"nonuniform sintering"occurs that negatively affects the thermal and mechanical properties of the core.Standard samples ...During sintering of the silica-based ceramic core of turbine blades,a phenomenon called"nonuniform sintering"occurs that negatively affects the thermal and mechanical properties of the core.Standard samples of silica-based core were prepared by an injection molding method and sintered with alumina backfilling powder with different sodium contents.The effect of sodium content on the nonuniform sintering of silica-based cores and the thermal and mechanical properties was evaluated.Results show that the sintering level and the content ofα-cristobalite in the surface layer are significantly higher than that of the sample interior.A considerable number of microcracks are found in the surface layer due to theβtoα-phase transition of cristobalite.As the sodium content in the alumina powder decreases,the level of the nonuniform sintering and the amount of crystallized cristobalite in the surface layer decrease,which is beneficial to the thermal expansion and flexural strength at ambient temperature.The flexural strength and thermal deformation at high temperature are improved by reducing the surface cracks,but deteriorated with the decrease of the cristobalite crystallization when the surface cracks are macroscopically invisible.展开更多
Both of the single crystal(SX) castability and undercoolability of PWA1383 superalloy were investigated during the directional solidifi cation and isothermal cooling. In all the six SX parts of a casting cluster, no s...Both of the single crystal(SX) castability and undercoolability of PWA1383 superalloy were investigated during the directional solidifi cation and isothermal cooling. In all the six SX parts of a casting cluster, no stray grains were found, revealing a defect-free SX structure. This excellent SX castability of the superalloy was attributed to its good undercoolability. The melting point(T_L) and the critical nucleation temperature( T_N) of the alloy were measured to be 1327 °C and 1306 °C, respectively. The statistic average of the critical nucleation undercooling Δ T_N = T_L-T_N of the alloy was determined to be about 21 K, exhibiting a relatively great capacity to be deeply cooled to a temperature below the melting point without the onset of solidifi cation.展开更多
基金supported by the“Shenzhen Peacock Plan”the“Guangdong Innovative&Entrepreneurial Research Team Program”
文摘In order to investigate the asymmetry of thermal conditions during directional solidification, the temperature evolution and correspondingly developed undercooling in a simplified single crystal blade cluster were numerically simulated. Simulation results demonstrate that the temperature distribution at the blade platforms is obviously asymmetrical. On the outside of the blade which directly faces the heating element, the liquidus(TL) isotherms progress relatively smoothly. On the inside of the blades facing the central rod, however, the TLisotherms are in concave shape and the slope goes upwards to the platform extremities. The average undercooling extent ?T and undercooling time ?t at the inside are much higher than those at the outside. It was then predicted that the inside platform extremities have significantly higher probabilities of stray grain formation compared to the outside ones. A corresponding experiment was carried out and the metallographic examination exhibited the same side-and height-dependence of stray grain formation in the blades as predicted. On the inside of the blades, all platforms are occupied by stray grains, while the platforms on the outside are nearly stray grain free. The simulation result agrees very well with the experimental observation.
基金funded by the Shenzhen Development and Reform Commission Project(SZDRC 20181000)made possible through funding from the Wedge Central South Research Institute,Chinasupported by the State Key Laboratory of Solidification Processing,Northwestern Polytechnical University,China。
文摘During sintering of the silica-based ceramic core of turbine blades,a phenomenon called"nonuniform sintering"occurs that negatively affects the thermal and mechanical properties of the core.Standard samples of silica-based core were prepared by an injection molding method and sintered with alumina backfilling powder with different sodium contents.The effect of sodium content on the nonuniform sintering of silica-based cores and the thermal and mechanical properties was evaluated.Results show that the sintering level and the content ofα-cristobalite in the surface layer are significantly higher than that of the sample interior.A considerable number of microcracks are found in the surface layer due to theβtoα-phase transition of cristobalite.As the sodium content in the alumina powder decreases,the level of the nonuniform sintering and the amount of crystallized cristobalite in the surface layer decrease,which is beneficial to the thermal expansion and flexural strength at ambient temperature.The flexural strength and thermal deformation at high temperature are improved by reducing the surface cracks,but deteriorated with the decrease of the cristobalite crystallization when the surface cracks are macroscopically invisible.
基金financially supported by the Shenzhen Peacock Plan (Grant No. 20150128085205453)the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (Grant No. 607264877417)+3 种基金the National Natural Science Foundation of China (Grant No. 51505457)the National Science and Technology Major Project (Grant No. 2017-Vll-0008)the Key Research and Development Program of Shaanxi Province (Grant No. 2018ZDXMGY-059)the National Science and Technology Major Project (No. 2017ZX04014001)
文摘Both of the single crystal(SX) castability and undercoolability of PWA1383 superalloy were investigated during the directional solidifi cation and isothermal cooling. In all the six SX parts of a casting cluster, no stray grains were found, revealing a defect-free SX structure. This excellent SX castability of the superalloy was attributed to its good undercoolability. The melting point(T_L) and the critical nucleation temperature( T_N) of the alloy were measured to be 1327 °C and 1306 °C, respectively. The statistic average of the critical nucleation undercooling Δ T_N = T_L-T_N of the alloy was determined to be about 21 K, exhibiting a relatively great capacity to be deeply cooled to a temperature below the melting point without the onset of solidifi cation.