Fast and reliable localization of high-energy transients is crucial for characterizing the burst properties and guiding the follow-up observations.Localization based on the relative counts of different detectors has b...Fast and reliable localization of high-energy transients is crucial for characterizing the burst properties and guiding the follow-up observations.Localization based on the relative counts of different detectors has been widely used for all-sky gamma-ray monitors.There are two major methods for this count distribution localization:χ^(2)minimization method and the Bayesian method.Here we propose a modified Bayesian method that could take advantage of both the accuracy of the Bayesian method and the simplicity of the χ^(2)method.With comprehensive simulations,we find that our Bayesian method with Poisson likelihood is generally more applicable for various bursts than the χ^(2)method,especially for weak bursts.We further proposed a location-spectrum iteration approach based on the Bayesian inference,which could alleviate the problems caused by the spectral difference between the burst and location templates.Our method is very suitable for scenarios with limited computation resources or timesensitive applications,such as in-flight localization software,and low-latency localization for rapidly follow-up observations.展开更多
The Gravitational wave burst high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)is a dedicated mission for monitoring high-energy transients.Here we report the design of the GECAM Scientific Ground Segment(...The Gravitational wave burst high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)is a dedicated mission for monitoring high-energy transients.Here we report the design of the GECAM Scientific Ground Segment(GSGS)in terms of the scientific requirements,including the architecture,the external interfaces,the main function,and workflow.Judging from the analysis and verification results during the commissioning phase,the GSGS functions well and is able to monitor the status of the payloads,adjust the parameters,develop the scientific observation plans,generate the scientific data products,analyze the data,etc.Thus,the on-orbit operation and scientific researches of GECAM are guaranteed.展开更多
基金supported by the National Key R&D Program of China(2021YFA0718500)support from the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences(grant Nos.XDA15360102,XDA15360300,XDA15052700 and E02212A02S)+1 种基金the National Natural Science Foundation of China(grant Nos.12173038 and U2038106)the National HEP Data Center(grant No.E029S2S1)。
文摘Fast and reliable localization of high-energy transients is crucial for characterizing the burst properties and guiding the follow-up observations.Localization based on the relative counts of different detectors has been widely used for all-sky gamma-ray monitors.There are two major methods for this count distribution localization:χ^(2)minimization method and the Bayesian method.Here we propose a modified Bayesian method that could take advantage of both the accuracy of the Bayesian method and the simplicity of the χ^(2)method.With comprehensive simulations,we find that our Bayesian method with Poisson likelihood is generally more applicable for various bursts than the χ^(2)method,especially for weak bursts.We further proposed a location-spectrum iteration approach based on the Bayesian inference,which could alleviate the problems caused by the spectral difference between the burst and location templates.Our method is very suitable for scenarios with limited computation resources or timesensitive applications,such as in-flight localization software,and low-latency localization for rapidly follow-up observations.
基金supported by the National Key R&D Program of China(2022YFF0711404,2021YFA0718500)International Partnership Program of Chinese Academy of Sciences(grant No.113111KYSB20190020)+2 种基金the National Natural Science Foundation of China(NSFC,Grant No.U1938106)the open subject of the National HEP Data Center(E029S2S1)support from the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences(grant Nos.XDA15360102,XDA15360300,XDA15052700 and E02212A02S)。
文摘The Gravitational wave burst high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)is a dedicated mission for monitoring high-energy transients.Here we report the design of the GECAM Scientific Ground Segment(GSGS)in terms of the scientific requirements,including the architecture,the external interfaces,the main function,and workflow.Judging from the analysis and verification results during the commissioning phase,the GSGS functions well and is able to monitor the status of the payloads,adjust the parameters,develop the scientific observation plans,generate the scientific data products,analyze the data,etc.Thus,the on-orbit operation and scientific researches of GECAM are guaranteed.