目的对法医人类学遗骸识别研究领域的文献进行计量学分析,描述当前的研究现状并预测未来的研究热点。方法基于Web of Science信息服务平台(以下简称“WoS”)中核心数据库(Web of Science Core Collection,WoSCC)检索和提取的数据,分析1...目的对法医人类学遗骸识别研究领域的文献进行计量学分析,描述当前的研究现状并预测未来的研究热点。方法基于Web of Science信息服务平台(以下简称“WoS”)中核心数据库(Web of Science Core Collection,WoSCC)检索和提取的数据,分析1991—2022年遗骸识别研究的发展趋势和主题变化。运用python3.9.2和Gephi0.10对法医人类学遗骸识别相关研究的发文趋势、国家(地区)、机构、作者和主题进行网络可视化分析。结果获得法医人类学遗骸识别相关英文文献873篇。发表文献数量最多的期刊是Forensic Science International(164篇),发文最多的国家(地区)是中国(90篇),Katholieke Univ Leuven(荷兰,21篇)是发表英文文献最多的机构。主题分析结果显示,人类遗骸研究的热点是遗骸的性别鉴定和年龄推断,并且常用的遗骸是牙齿。结论法医人类学遗骸识别研究领域的发文量具有明显的阶段性,然而,国际合作与国内合作的范围尚显局限。传统的遗骸识别主要依赖于骨盆、颅骨和牙齿等关键部位。未来的研究热点将聚焦于利用机器学习和深度学习技术,对多种骨骼遗骸进行更为精准和高效的鉴定。展开更多
Designing highly active and durable electrocatalysts towards oxygen reduction reaction(ORR)plays a paramount importance for proton exchange membrane fuel cells.Pt-based binary alloys Pt-M(M=3d-transition metals)posses...Designing highly active and durable electrocatalysts towards oxygen reduction reaction(ORR)plays a paramount importance for proton exchange membrane fuel cells.Pt-based binary alloys Pt-M(M=3d-transition metals)possessing excellent electronic and geometric properties have received increasing interests as highly active electrocatalysts.Herein,we report a series of Pt_(x)Co/C(x=1,2,3)catalysts by a facile one-pot soft-chemistry method.In the acidic conditions,the mass activities of PtCo/C,Pt_(2)Co/C and Pt_(3)Co/C are 0.526,0.462 and 0.441 A·mgPt^(-1),which are 2.60,2.31 and 2.22 times higher than that of Pt/C(0.200 A·mgPt^(-1)),respectively.The specific activities of PtCo/C,Pt_(2)Co/C and Pt_(3)Co/C are 706.59,679.41 and 801.83μA·cm^(-2),which are accordingly 2.89,2.76 and 3.28 times higher than that of Pt/C(244.75μA·cm^(-2)).Notably,Pt_(3)Co/C shows a remarkable durability.After 5000 cycles of the accelerated durability testing,the mass activity and specific activity of Pt_(3)Co/C catalyst are 2.47 and 3.80 times higher than that of the commercial Pt/C,respectively.The improved ORR activity and durability can be ascribed to the synergistic interaction between Pt and Co.展开更多
基金financially supported by the Project of National Natural Science Foundation of China(No.5202780089)。
文摘Designing highly active and durable electrocatalysts towards oxygen reduction reaction(ORR)plays a paramount importance for proton exchange membrane fuel cells.Pt-based binary alloys Pt-M(M=3d-transition metals)possessing excellent electronic and geometric properties have received increasing interests as highly active electrocatalysts.Herein,we report a series of Pt_(x)Co/C(x=1,2,3)catalysts by a facile one-pot soft-chemistry method.In the acidic conditions,the mass activities of PtCo/C,Pt_(2)Co/C and Pt_(3)Co/C are 0.526,0.462 and 0.441 A·mgPt^(-1),which are 2.60,2.31 and 2.22 times higher than that of Pt/C(0.200 A·mgPt^(-1)),respectively.The specific activities of PtCo/C,Pt_(2)Co/C and Pt_(3)Co/C are 706.59,679.41 and 801.83μA·cm^(-2),which are accordingly 2.89,2.76 and 3.28 times higher than that of Pt/C(244.75μA·cm^(-2)).Notably,Pt_(3)Co/C shows a remarkable durability.After 5000 cycles of the accelerated durability testing,the mass activity and specific activity of Pt_(3)Co/C catalyst are 2.47 and 3.80 times higher than that of the commercial Pt/C,respectively.The improved ORR activity and durability can be ascribed to the synergistic interaction between Pt and Co.