Several consecutive extreme cold events impacted China during the first half of winter 2020/21,breaking the low-temperature records in many cities.How to make accurate climate predictions of extreme cold events is sti...Several consecutive extreme cold events impacted China during the first half of winter 2020/21,breaking the low-temperature records in many cities.How to make accurate climate predictions of extreme cold events is still an urgent issue.The synergistic effect of the warm Arctic and cold tropical Pacific has been demonstrated to intensify the intrusions of cold air from polar regions into middle-high latitudes,further influencing the cold conditions in China.However,climate models failed to predict these two ocean environments at expected lead times.Most seasonal climate forecasts only predicted the 2020/21 La Niña after the signal had already become apparent and significantly underestimated the observed Arctic sea ice loss in autumn 2020 with a 1-2 month advancement.In this work,the corresponding physical factors that may help improve the accuracy of seasonal climate predictions are further explored.For the 2020/21 La Niña prediction,through sensitivity experiments involving different atmospheric-oceanic initial conditions,the predominant southeasterly wind anomalies over the equatorial Pacific in spring of 2020 are diagnosed to play an irreplaceable role in triggering this cold event.A reasonable inclusion of atmospheric surface winds into the initialization will help the model predict La Niña development from the early spring of 2020.For predicting the Arctic sea ice loss in autumn 2020,an anomalously cyclonic circulation from the central Arctic Ocean predicted by the model,which swept abnormally hot air over Siberia into the Arctic Ocean,is recognized as an important contributor to successfully predicting the minimum Arctic sea ice extent.展开更多
Multiscale materials modeling as a new technique could offer more accurate predictive capabilities. The most active area of research for multiscale modeling focuses on the concurrent coupling by considering models on ...Multiscale materials modeling as a new technique could offer more accurate predictive capabilities. The most active area of research for multiscale modeling focuses on the concurrent coupling by considering models on disparate scales simultaneously. In this paper, we present a new concurrent multiscale approach, the energy density method(EDM), which couples the quantum mechanical(QM) and the molecular dynamics(MD) simulations simultaneously. The coupling crossing different scales is achieved by introducing a transition region between the QM and MD domains. In order to construct the energy formalism of the entire system, concept of site energy and weight parameters of disparate scales are introduced.The EDM is applied to the study of the multilayer relaxation of the Ni(001) surface structure and is validated against the periodic density functional theory(DFT) calculations. The results show that the concurrent EDM could combine the accuracy of the DFT description with the low computational cost of the MD simulation and is suitable to the study of the local defects subjected to the influence of the long-range environment.展开更多
The structural, anisotropic elastic properties and the ideal compressive and tensile strengths of titanium diboride (TiB2) were investigated using first-principles calculations based on density functional theory. Th...The structural, anisotropic elastic properties and the ideal compressive and tensile strengths of titanium diboride (TiB2) were investigated using first-principles calculations based on density functional theory. The stress-strain relationships of TiB2 under 〈10i0〉, 〈12i0〉, and 〈0001〉 compressive loads were calculated. Our results showed that the ideal uniaxial compressive strengths are |σ〈02i0〉)| = 142.96 GPa, |σ〈0001〉 ] = 188.75 GPa, and |σ〈10i0〉| = 245.33 GPa, at strains -0.16, -0.32, and -0.24, respectively. The variational trend is just the opposite to that of the ideal tensile strength with σ〈10i0〉 = 44.13 GPa, σ〈0001〉 = 47.03 GPa, and σ〈i2i0〉 = 56.09 GPa, at strains 0.14, 0.28, and 0.22, respectively. Furthermore, it was found that TiB2 is much stronger under compression than in tension. The ratios of the ideal compressive to tensile strengths are 5.56, 2.55, and 4.01 for crystallographic directions (10i0), 〈12i0〉, and 〈0001〉, respectively. The present results are in excellent agreement with the most recent experimental data and should be helpful to the understanding of the compressive property of TiB2.展开更多
The Northern-Hemisphere high-latitude continents experienced extremely cold weathers in winter 2009 2010. In the present paper, we show that the cold winter was associated with the activity of tile Arctic oscillation ...The Northern-Hemisphere high-latitude continents experienced extremely cold weathers in winter 2009 2010. In the present paper, we show that the cold winter was associated with the activity of tile Arctic oscillation (AO), which demonstrated the strongest negative polarity over the past six decades and persisted from December, 2009 to March, 2010. It is found that variations of the surface AO was closely linked to stratospheric polar vortex anomalies, and that the surface AO phases followed downward propagation of stratospheric Northern-Hemisphere Annular mode (NAM) anomalies during the winter. The case of 2009-2010 winter provides us with a typical example that anomalous stratospheric signals can be used to improve skills of long-range weather forecast and intra-seasonal climate prediction in winter time. We also show that the E1 Nifio event, which started developing from May 2009, might contribute the formation of exceptionally negative and persistent AO and stratospheric NAM, particularly over North Pacific and North America.展开更多
During insect larval-pupal metamorphosis,proteins in the hemolymph are absorbed by the fat body for the maintenance of intracellular homeostasis;however,the type of proteins and how these proteins are internalized int...During insect larval-pupal metamorphosis,proteins in the hemolymph are absorbed by the fat body for the maintenance of intracellular homeostasis;however,the type of proteins and how these proteins are internalized into the fat body are unclear.In Bombyx mori,the developmental profiles o f total proteins in the hemolymph and fat body showed that hemolymph-decreased protein bands(55-100 kDa)were in accordance with those protein bands that increased in the fat body.Inhibition o f clathrin-dependent endocytosis predominantly blocked the transportation o f 55-100 kDa proteins from the hemolymph into the fat body,which was further verified by RNA interference treatment o f Bmclathrin.Six hexamerins were shown to comprise〜90%of the total identified proteins in both the hemolymph and fat body by mass spectrum(MS)analysis.In addition,hemolymphspecific proteins were mainly involved in material transportation,while fat body-specific proteins particularly participated in metabolism.In this paper,four hexamerins were found for the first time,and potential proteins absorbed by the fat body from the hemolymph through clathrin-dependent endocytosis were identified.This study sheds light on the protein absorption mechanism during insect metamorphosis.展开更多
基金supported by the Key Research Program of Frontier Sciences,CAS (Grant No. ZDBS-LY-DQC010)the National Natural Science Foundation of China (Grant Nos. 41876012 and 41861144015,42175045)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB42000000).
文摘Several consecutive extreme cold events impacted China during the first half of winter 2020/21,breaking the low-temperature records in many cities.How to make accurate climate predictions of extreme cold events is still an urgent issue.The synergistic effect of the warm Arctic and cold tropical Pacific has been demonstrated to intensify the intrusions of cold air from polar regions into middle-high latitudes,further influencing the cold conditions in China.However,climate models failed to predict these two ocean environments at expected lead times.Most seasonal climate forecasts only predicted the 2020/21 La Niña after the signal had already become apparent and significantly underestimated the observed Arctic sea ice loss in autumn 2020 with a 1-2 month advancement.In this work,the corresponding physical factors that may help improve the accuracy of seasonal climate predictions are further explored.For the 2020/21 La Niña prediction,through sensitivity experiments involving different atmospheric-oceanic initial conditions,the predominant southeasterly wind anomalies over the equatorial Pacific in spring of 2020 are diagnosed to play an irreplaceable role in triggering this cold event.A reasonable inclusion of atmospheric surface winds into the initialization will help the model predict La Niña development from the early spring of 2020.For predicting the Arctic sea ice loss in autumn 2020,an anomalously cyclonic circulation from the central Arctic Ocean predicted by the model,which swept abnormally hot air over Siberia into the Arctic Ocean,is recognized as an important contributor to successfully predicting the minimum Arctic sea ice extent.
文摘Multiscale materials modeling as a new technique could offer more accurate predictive capabilities. The most active area of research for multiscale modeling focuses on the concurrent coupling by considering models on disparate scales simultaneously. In this paper, we present a new concurrent multiscale approach, the energy density method(EDM), which couples the quantum mechanical(QM) and the molecular dynamics(MD) simulations simultaneously. The coupling crossing different scales is achieved by introducing a transition region between the QM and MD domains. In order to construct the energy formalism of the entire system, concept of site energy and weight parameters of disparate scales are introduced.The EDM is applied to the study of the multilayer relaxation of the Ni(001) surface structure and is validated against the periodic density functional theory(DFT) calculations. The results show that the concurrent EDM could combine the accuracy of the DFT description with the low computational cost of the MD simulation and is suitable to the study of the local defects subjected to the influence of the long-range environment.
文摘The structural, anisotropic elastic properties and the ideal compressive and tensile strengths of titanium diboride (TiB2) were investigated using first-principles calculations based on density functional theory. The stress-strain relationships of TiB2 under 〈10i0〉, 〈12i0〉, and 〈0001〉 compressive loads were calculated. Our results showed that the ideal uniaxial compressive strengths are |σ〈02i0〉)| = 142.96 GPa, |σ〈0001〉 ] = 188.75 GPa, and |σ〈10i0〉| = 245.33 GPa, at strains -0.16, -0.32, and -0.24, respectively. The variational trend is just the opposite to that of the ideal tensile strength with σ〈10i0〉 = 44.13 GPa, σ〈0001〉 = 47.03 GPa, and σ〈i2i0〉 = 56.09 GPa, at strains 0.14, 0.28, and 0.22, respectively. Furthermore, it was found that TiB2 is much stronger under compression than in tension. The ratios of the ideal compressive to tensile strengths are 5.56, 2.55, and 4.01 for crystallographic directions (10i0), 〈12i0〉, and 〈0001〉, respectively. The present results are in excellent agreement with the most recent experimental data and should be helpful to the understanding of the compressive property of TiB2.
文摘The Northern-Hemisphere high-latitude continents experienced extremely cold weathers in winter 2009 2010. In the present paper, we show that the cold winter was associated with the activity of tile Arctic oscillation (AO), which demonstrated the strongest negative polarity over the past six decades and persisted from December, 2009 to March, 2010. It is found that variations of the surface AO was closely linked to stratospheric polar vortex anomalies, and that the surface AO phases followed downward propagation of stratospheric Northern-Hemisphere Annular mode (NAM) anomalies during the winter. The case of 2009-2010 winter provides us with a typical example that anomalous stratospheric signals can be used to improve skills of long-range weather forecast and intra-seasonal climate prediction in winter time. We also show that the E1 Nifio event, which started developing from May 2009, might contribute the formation of exceptionally negative and persistent AO and stratospheric NAM, particularly over North Pacific and North America.
基金This study was supported by the National Natu-ral Science Foundation of China(grants 31472042 and 31672368 to LT,31702053 to KL and 31702065 to HY)the Natural Science Foundation of Guangdong Province(grant 2017A030311024 to LT)。
文摘During insect larval-pupal metamorphosis,proteins in the hemolymph are absorbed by the fat body for the maintenance of intracellular homeostasis;however,the type of proteins and how these proteins are internalized into the fat body are unclear.In Bombyx mori,the developmental profiles o f total proteins in the hemolymph and fat body showed that hemolymph-decreased protein bands(55-100 kDa)were in accordance with those protein bands that increased in the fat body.Inhibition o f clathrin-dependent endocytosis predominantly blocked the transportation o f 55-100 kDa proteins from the hemolymph into the fat body,which was further verified by RNA interference treatment o f Bmclathrin.Six hexamerins were shown to comprise〜90%of the total identified proteins in both the hemolymph and fat body by mass spectrum(MS)analysis.In addition,hemolymphspecific proteins were mainly involved in material transportation,while fat body-specific proteins particularly participated in metabolism.In this paper,four hexamerins were found for the first time,and potential proteins absorbed by the fat body from the hemolymph through clathrin-dependent endocytosis were identified.This study sheds light on the protein absorption mechanism during insect metamorphosis.